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MiST.:ARCH C*4) I: 7 V-ELOPL'.:-.:1"
IN EuucATION OF HANDICAPPED CHILDREN

it' Department of Special Education

Pattee Hall, University of Minnesota, Minneapolis, Minnesota 55455

the Univers1.4 of :!innef;ota !Zesearch, Develop:Lent and De..,on,:r.1:i-n

Center in Education of Handicapped Children has been estallished to

concentrate on intervention strategies and materials which develop.,,n

improve language and communication skills in young handicapped children.

The long term objective of the Center is to improve the languave

and communication abilities of handicapped children by means of iden-

tification of linguistically and potentially linguistically handicanpee:

children, development and evaluation of intervention strategies with

young handicapped children and dissemination of findings ard predicts

of benefit to young handicapped children.
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Preface

Identification of unidimensional sequences and hierarchical

orders is a fundamental task of measurement theory. In the area of

education, proper sequencing and gradation of learning experience

often determines the overall success or failure of educational

intervention. The problem of adequate determination of a particular

degree of cognitive development and subsequent interfacing of this

intellectual "readiness" with properly scaled sequences of educational

process, is salient in the area of special education.

As explicated later, extant psychometric methods, traditionally

applied to the problem of isolation of ordered, hierarchically

graded, unidimensional components of data matrices, are not quite

satisfactory. The initial effort to reconceptualize the traditional

approach in terms of a logic model was done in collaboration with Dr.

William Bart. Combining the earlier findings of Dr. Peter Airasian of

Boston College with s "me new insights, the resulting procedure for

isolation of logical orders among' variables was called "tree" and

later "ordering" theory.

Results of practical applications of ordering theory methods were

only partially encouraging. The formal, logic-based orderings led

to meaningful interpretations only in special cases when the property

measured possessed a singular meaning. Also, the inferential rationale

was nonexistent and attempts to construct logic diagrams of any sizable

data matrices resembled in favorable cases an intricate maze. In the

case of medium-sized, multidimensional data matrices typical of most

research problems, the logic diagram was too complicated to be interpreted.

ii
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The method of order analysis was initially concieved through

reconceptualization of the traditional variance measure, by identifica-

tion of functions of propositional calculus which would be both infor-

mation and variance generative, and by realization that separate

branches of "tree" logic diagrams of ordering theory are identical

to Guttman-type data matrices. The subsequent development of order

analysis was documented in a series of research reports, occassional

papers, journal articles, and yet unpublished manuscripts. It is

presented here in an integrated form with the exception of the Fortran

program for order analysis, published separately in the same series of

technical reports.

The present synopsis of research findings spans the development

of order analysis from the spring of 1970. During the intervening

years, this development was supported by the Eva O. Miller Reserach

Fellowship (1972-1973), by a grant of computer time from the University

Computer Center (1971-1974) and by a grant to the Research, Development

and Demonstration Center (1973-1974). The Center is funded by a

grant (0E-09-332189-4533-032) from the United States Office of Education.

I am indebted to Patricia Bland for editorial assistance, to Drs.

David Weiss and William Bart for critical comments on the manuscript

and to Dr. Donald Moores for making the preparation of this report

possible.

Minneapolis, Minnesota

April, 1974
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Abstract

Order analysis is a measurement technique for the quan-

titative and generalizable description of complex structures.

Relations between the manifest elements of a data matrix and

its underlying latent entities and attributes are considered

in terms of magnitudes as basic scale units. Magnitude is

conceptualized as a difference relation, translated into the

binary units of information theory and linked with the func-

tional relations of the propositional calculus of formal logic.

Deterministic and probabilistic models of order analysis are

developed. The deterministic model elaborates an algorithm

for partitioning of binary relations within the context of

Guttman-type scaling. The probabilistic model extends these

principles within the framework of graph theory; it permits

the generalization of ordered structures into their latent

domains with a known degree of statistical certainty. Relation

of order analysis to factor analysis is discussed, as well as

components of isolated binary variation. Order analysis is

validated on sets of prestructured, distorted and random

data and its utility considered within the general framework

of multivariate analysis models.
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Chapter 1

INTRODUCTION

The foundations of measurement in psychology formulate

basic axioms and theorems pertaining to the question of how

abstract properties can be expressed within abstract systems

of constructs. This lack of tangible referents is character-

istic of measurement in social sciences as contrasted with

its collateral branch in the physical sciences.

Measurement implies the description of data in terms of

numbers, and any attempt to build a structure of a collection

of data usually centers on the possible operations which can be

done on such a set of numbers. It is difficult.to imagine any

kind of measurement which cannot be expressed in a matrix or

vector form. From the standpoint of numerical analysis it is

irrelevant how elements of a data matrix were obtained. Also

the content of measurement, the domain of attributes or entities

inferred or assumed is totally irrelevant with respect to the

matheLlatical operations on the elements of the data matrix.

On the other hand, research in science is dependent jointly

on the validity of measurement models and the validity of the

data; both being necessary but not sufficient conditions for

the validity of the total measurement operation.

Considered on a general level, operations on which a

lu
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system of measurements of complex systems is founded can be

unfolded in two basic directions. The more familiar direction

is toward gradually increasing complexity. The other direction,

which is less familiar, leads to abstractness and logical

simplicity. It endeavors to extend operational systems by

scrutinizing their general principles and assumptions, and

attempts to redefine them at a more basic level. Subsequent

development can then reintroduce a'reconstruction of formerly

primitive concepts and continue in their elaboration along

alternative paths.

In noncontrived situations, measurement is logically rather

an intricate operation. In the case of nonsingular systems,

its complexity is based on the fact that particular properties

contained in the system are initially unknown. The matrix of

numbers should have a definite meaning and not only certain

formal properties. In order for this to be true, the relation

of isomorphism must be established between the latent proper-

ties of the natural system and the formal one. To preserve

this isomorphism during often elaborate transformations, the

first step in the analysis should aim at identification of

these attributes. By establishing a proper isomorphic relation

between these attributes and our formal, quantitative, numeri-

cal system, any lawful algebraic operation will hold and will

have a definite, not only formal, meaning.
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The question of validity of measurement operations cannot

be treated in its complexity without considering jointly the

formal properties of quantitative systems and the natural prop-

erties of systems capable of processing information, which

are frequently desc-:ibed as the cognitive systems. The problem

is phrased here as the inquiry into the joint interaction of

both formal (numerical and logical) and natural (cognitive)

systems and contrasted with measurement operations based on

the general polynomial model of the test theory (Horst, 1966).

General polynomial model of test theory.

Classical test (measurement) theory may be briefly des-

cribed as an application of linear least squares estimation

along the lines of traditional error analysis and is perhaps

best typified by its major compendia (Yule, 1919; Kelley, 1924;

Spearman, 1926; Guilford, 1936; Thurstone, 1947; Gulliksen,

1950; Torgerson, 1958; Lord and Novick, 1968). While some

models of this group compel partitioning of a data matrix into

submatrices and use solutions of simultaneous normal equations

for determination of the transformation matrix (as in the

,f multiple regression analysis), other models transform

the whole data matrix according to a specific algorithm. A

typical example of this latter case is the factor analytic

model. It consists of a chain of matrix transformations of
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the data matrix, the key transformation being the solution of

the characteristic equation for its roots or factors. Thin

particular transformation attempts to answer the quer

whether there is a scalar number A which when multiplying the

vector x, yields the identical vector resulting from the

product Ax. The polynomial resulting from

det(A-AI) (1.1)

is called the characteristic polynomial. In order to find its

roots, we set it equal to zero, thus changing it into the

characteristic equation. Its roots, or factors are sometimes

called eigenvalues and can be imagined as intersection points

of mutually orthogonal axes with a function specified by the

characteristic equation. In general it can be shown that the

characteristic equation of a square matrix of order n equals

a polynomial of nth order:

det(A-XI) = +c
n-1

n -1+c

n-2

n-2+...

1+( -1)
n
(A]

(1.2)

Comparison of this polynomial with another model of the

classic measurement theory as e.g. a model of a typical ANOVA

design including interaction terms

y = w1x1+w2x2+nx1x2... (1.3)

or a multiple regression model

y = w1x1+w2x2+w3x3... (1.4)
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allows for tentative postulation of a nonspecific general

multivariate polynomial model. Suggestion of this general

paradigm was made by Horst (1966), and we can observe most,

if not all of the classical theory models to be subsumed by

it. Its integrative potential is suggested e.g. by Burt's

(1966) conjoint model for both factor analysis and the analysis

of variance.

Within the framework of classic measurement theory,

development can be observed from zero-order, partial, and

multiple correlations into the region of multiple regression,

component analysis, canonical correlation, factor analysis,

and related techniques. Relatively recent developments

attempt to extend the general multivariate polynomial model

to higher order or non-linear function;; as in the case of

the recruitment equations of latent structure analysis

P + a
0
ijk

+ al
ijk

M1 + a2
ijk

M
2
+ a3

ij
M

ijk k 3 (1.5)

(Lazarsfeld, 1958; Gibson, 1960, 1966).

Lunneborg (1960) suggests the existence of a close rela-

tionship between the configural analysis (McQuitty, 1955) and

the latent structure models. Horst, in a similar context,

comments that "it can readily be shown that the general

multivariate polynomial model will completely identify all

possible patterns of item responses to a set of items. The
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general configural model may then be taken as the general

multivariate model considered in latent class analysis."

(Horst, 1966, p. 150).

Psychometric theory connects polynomial models into a

fairly integrated whole. Inherent in this group of models

are certain difficulties which by their nature and pervasive-

ness generate doubts if they can be solved without changing the

basic concepts inherent in the general polynomial paradigm.

These difficulties are highlighted as we move from bivariate

to multivariate polynomial models and are best typified by

perhaps the most sophisticated model of the polynomial class,

represented by the factor analytic group.

Assumption of linear orders

The majority of transformation matrices within the classic

model were developed within the linear algebra context of

methods allowing for simultaneous Solutions of systems of

linear equations. Thus e.g. Spearman's (1904) criterion of

tetrad differences as well as Yule's (1919) phi coefficient

are applications of the principle of the determinant. The

assumption of the presence of a linear order among the ele-

ments of a data matrix is seldom tested for, and "orderings

developed from both logical and statistical analysis indicate

that non-linear orderings are the rule rather than the excep-

tion" (Airaisian and Bart, 1973). Failure to take into
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consideration interitem relations of different types can

result in substantial loss of information.

Meehl (1950) illustrated with theoretical data that two

test items taken jointly as a pattern or response can have a

perfect correlation with a criterion even though, when treated

separately, this correlation vanishes. This obviously repre-

sents the extreme case which, however, can exist in lesser

degree. It is interesting to compare tables 1, 2, and 3 of

Meehl's original article (Meehl, 1950, p. 166) with Table 1.1.

Meehl's fourfold point surfaces were translated into the

original data matrix form and responses of one hundred subjects

were reduced into four subject types. Applying the method

described by Krus and Bart (1974), the evident bidimensionality

of this matrix can be verified. Meehl's paradox thus exemplifies

the need for priority of dimensional decomposition of a data

matrix over other computational operations.

Attempts to circumvent problems highlighted by Meehl's

paradox lead to methods typified by Lykken's (1956) actuarial

pattern analysis and McQuitty's (1957) multiple configural

analysis. This approach stresses a typological as opposed to

dimensional way of organization of test responses. It encoun-

ters the basic difficulty that the number of response patterns

increase exponentially with the number of items. This led to

difficulties such as the "p,oblem of empty cells," which were
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Table 1.1. Reconstruction of the Data Matrix for the Meehl

Paradox. Table 1.1 is the rearranged composite of Meehl's

Tables 1, 2, and 3(Meehl, 1950, p. 166).

SUBJECT TYPES ITEMS DIAGNOSIS

SUBJECT TYPE A 1 1 NEUROTIC

SUBJECT TYPE B 0 0 NEUROTIC

SUBJECT TYPE C 1 0 SCHIZOPHRENIC

SUBJECT TYPE D 0 1 SCHIZOPHRENIC

l
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yet not solved.

Similar problems are encountered when non-linear rela-

tionships are assumed and a higher order multivariate poly-

nomial model is used. Limitation of such a procedure is des-

cribed by Horst as "the enormous rapidity with which higher-

order variables are introduced into the system [which] fre-

quently causes one to run out of degrees of freedom". (Horst,

1966, p. 135)

These and related findings point toward the possible loss

of information induced by this assumption; the amount of this

loss is determined by the character of the data analyzed.

Traceability of equivalence of inceptive and terminal structures.

Construction of'isomorphic and homomorphic formal structures

of biological systems (especially human cognitive systems) is

the central area of psychological inquiry. Isomorphism means

similarity in pattern, where the relations between the domain

and range of mapping operations are undistorted. Thus a photo-

graphic negative of a chessboard will correctly reflect spatial

relations between pieces, though the appearances with respect

to brightness are different. Homomorphism occurs when (isomor-

phic) a "many-one" type of transformation is applied to a

system. Problems of homomorphic transformations are tradition-

ally treated (in psychology) in connection with problems of
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data types and their corresponding scale types. The matter

in question is the relation between the character of property

contained by the data matrix and the character of numbers in-

tended as its symbolic representation. Following the writings

of Stevens (1951), the fifties witnessed the period of interest

of psychologists in the theory of numbers and their role in

measurement, which culminated in Torgerson's (1958) comprehen-

sive treatment of the subject. Since then interest in the

whole problem declined, as evidenced by the cursory treatment

of this topic by Lord and Novick (1968, pages 20-23). This

gradual decline was paralleled at thesame time by the shift

of attention from the area of finite mathematics to the treat-

ment of measurement as continuous. This is contrary to the

development in other social sciences, where the computer revo-

lution was parallelled by the rise of finite mathematics

(cf. Kemeny et al., 1972).

Stevens' treatment of the problem of the "assignment of

numerals to objects or events" (1951, p. 22) was stimulated by

the earlier transfer of the topic from mathematics into philo-

sophy (cf. Campbell, 1928, 1938; Carnap, 1950; Russell, 1903).

The original inquiry into the basic problems of the theory of

numbers is by Frege (1884, 1893). Recent theoretical works of

Adams et al. (1965), Luce and Tukey (1964), and Suppes and

Zinnes (1963) elaborate on correspondence between the measured
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properties and their numerical representations.

The requirement that the measured property should be

represented by a symbolic system based minimally on a homo-

morphic transformation is reasonable. Consider the following

homomorphic transformation:

T
1

:

I

a b c h i

1 1 1 1 2 2 3 3

(1.6)

41

This transformation of the more complex system into a simpler

one insures that subsequent operations carried on the simpler

system will be based on a subset of information contained by

the original system.

Assumptions of some recent measurement models, derived

within the classical framework, try to superimpose a stronger

model on weaker data. Thus Lord and Novick state that "we

shall treat a measurement as having interval scale properties,

although it is clear that the measurement procedure and the

theory underlying it yield only a nominal, or, at best an

ordinal scale" (Lord and Novick, 1968, p. 22). The applica-

tion of strong models on weak data amounts to a converse of

homomorphic transformation. This produces possible distor-

tion of results by model-generated noise and difficulty in

tracing properties of the original system within the derived

model. The presence of these distorting factors was felt by
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the same authors, who ex post_ facto rather paradoxically

value utility over validity: "In fact, at least with psycho-

logical models of the type considered here, it can be taken

for granted that every model is false [sic) and that we can

prove so, if only we collect a sufficiently large sample of

data. The key question, then, is the practical utility of

the model, and not its ultimate truthfulness." (Lord and

Novick, 1968, p. 383).

If the properties measured are initially unknown, the

relation between them and the corresponding formal system

is established in two ways. First, the empirical approxi-

mation of an isomorphic relation can be achieved a posteriori

of the initial operations aimed at their extraction and

definition. The second way is the a priori definition of

the property measured, an approach frequently adopted within

the context of latent test theory (Lord, 1952) and related

models (Rasch, 1960). The typical definition of the a priori

type is: "the trait or ability under discussion can be thought

of as an ordered variable represented numerically in a single

dimension" (Lord, 1966, p. 22). In noncontrived situations,

the validity of this "a priori approach" is doubtful. In

numerous instances of "real" data matrices, isomorphic rela-

tion between properties present in the data matrix and derived

structures is distorted and untraceable to an unknown degree
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by this a priori definition of the measured property. Conse-

quently, one of the conditions necessary to establish a valid

relation between inceptive and terminal structure is an early

attempt to isolate properties we intend to measure. This

takes priority over any other goals of the analysis.

It is interesting to note that criticism of this tendency

to disregard possible (and probable) multidimensional structure

of data (i.e. the presence of multiple properties in the data

matrix) was made as early as 1843: "When determination orthe

mean is applied to the different parts of a complicated system,

it should be carefully kept in mind that these mean values

might be inconsistent with each other, for the system might

be in an impossible state if each of the elements took on its

mean value, determined separately." (Cournot, 1843, p. 213).

Generalizability of formal structures and related problems.

As contrasted with the assumption of linear orders, the

problem of generalizability was frequently explicitly stated

and its solutions were attempted both within and outside of

classical test theory. This problem was usually classified

together with other long-lasting issues of factor analysis

such as problems of communality estimation, and number of

factors to extract or retain. (cf. Thurstone, 1947; Harman,

1960; Horst, 1965; Rummel, 1970; Weiss, 1970, 1971) In this
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context, the problem of factorial invariance was often blamed

for the multiplicity of isolated structures and consequent

proliferation of theoretical constructs. The well known

example is the case of constructs associated with the MMPI

item pool (Wiggins, 1968), or the case of Cattel's (1957) and

Guilford's (1943) factorially derived traits.

The instability of factoria structures is a direct con-

sequence of a substantial lack of statistical inferential

rationale inherent in present models. This fact is further

complicated by the well-known tendency of these models to

isolate patterns of random variation. This was perhaps best

illustrated when Armstrong and Soelberg (1968) used principal

components analysis to analyze parts of Rand Corporation tables

of random numbers, where arbitrary trait names were assigned

prior to the analysis and convincingly interpreted afterwards.

Effort from within factor analytic theory to remedy these

problems include Bartlett's (1950) test of significance of the

correlation matrix prior to factor analysis through Humphreys

and Ilgen's (1969) "parallel analysis" approach. Attempts to

build the inferential mechanism directly into the model itself

include Kaiser and Caffrey's (1965) alpha factor analysis,

generalizing from a sample of variables to its population,

and Rao's (1955) canonical factor analysis, generalizing to

the population of subjects.
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Harris' (1962) comparative theoretical study of the mathe-

matical relationships between some traditional models showed

the proportionality between their factorial structures as

dependent on the rescaling of the diagonal of the correlation

matrix, resulting in varying degrees of depression of its rank.

In general, "one of the main characteristics that differentiate

one method of factoring from another is the procedure used

for estimating the communalities" (tile, Bent, and Hull, 1970,

p. 212). Thorndike's (1970) empirical comparative study of

structures returned by five different factor analytic models

(principal components, minimum residual, maximum likelihood,

image, and alpha), illustrates the consequences of these alter-

ations of the main diagonal. The same data were described

from 2 to 11 dimensions depending on which method was employed.

In the case of non-psychological data matrices and methods

other than principal components, failure to obtain a solution

frequently occurred.

Cluster analytic and multidimensional scaling models

represent the main alternatives to factor analysis. Borgen

and Weiss' (1971) overview of replicability and validity of a

variety of cluster analytic methods reports that results of

cluster analytic methods do not differ radically from those

achieved by factor analytic methods. These authors conclude

that "probably one of the most serious hidden dangers of
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cluster analysis is the possibility of basing a cluster

analysis completely or primarily on random data. With most

clustering methods it is entirely possible to perform a super-

ficially normal cluster analysis on totally random data."

(Borgen and Weiss, 1971, p. 590). Coombs' description of

the generalizability of multidimensional scaling methods

[represented by the work of Shepard (1962), Kruskal (1964),

Torgerson (1965); Lingoes (1966), Guttman (1968), and Beals,

Krantz, and Tversky (1968)] concludes that "statistical theory

for such analyses is almost totally undeveloped" (Coombs,

Dawes, and Tversky, 1970, p. 76). Coombs' judgment is in

concordance with Cliff's recent admission: "Among the unfilled

needs is some sort of statistical basis for deciding such

questions as the number of dimensions which can be readily

defined and the uncertainty of the coordinates of a given

point. This would be much more valuable than tests of the

null (nullest!) hypothesis that the proximities are random.

Failing such developments, multidimensional scaling is likely

to drift into the inferential quagmire that holds most of

traditional factor analysis" (Cliff, 1973, p. 484).

Recent advances in computer technology, facilitating

applications of theoretical developments in the general area

of finite mathematics, allow for workable alternatives to

former models of dimensional analysis. Order analysis attempts
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to introduce a sound Inferential rationale into this area;

the model is based on fundamental logical processes, which

increases the probability of preservation of isomorphism be-

tween the initial and derived structures. It does not assume

the presence of linear orders in the data matrix and attempts

to generalize the sample spaces of attributes and entities

into their respective domains.



Chapter 2

THE DIFFERENCE RELATION

Magnitude as a difference relation.

In the typical measurement situation in psychology, a

group of subjects is presented with a set of statements and

their reactions to these statements are recorded in the data

matrix. Thus created inceptive formal structure is trans-

formed and resulting terminal structure interpreted. This

repetitive process of scientific inference is based on certain

primitive notions. Variance, defined as a second moment about

the Aean, is frequently considered a primitive concept with

respect to partitioning of variance by various psychometric

models. In order analysis, the concept of magnitude as a

difference relation is used as a basic measurement unit.

The concept of magnitude has definite philosophical

underpinnings. it was developed by Russell (1903) within the

context of the Kantian epistemological controversy, centering

around the nature of meaning of true propositions of arithmetic.

To substantiate his argument that the context of formal struc-

tures is determined by truth functions of formal logic, Russell

had to refute one of Kant's axioms of intuition, namely the

axiom of anticipation of perception. This axiom states that

"every reality in phenomena, however small it may he, has a

v)
4:4
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degree, that is, an intensive quantity which can always be

diminished." (Kant, T. M. Greene edition, 1929, p. 115).

To support his argument, Russell had to distinguish between

quantity and magnitude. He defines magnitude as "anything which

is greater or less than something else" (Russell, 1903, p. 159)

and rejects the notion of direct report of quantity as equality

of a unit as not definable in terms of logical constants and

therefore, "not properly a notion belonging to pure mathematics

at all." (Russell, 1903, p. 158).

The importance of the distinction between magnitude and

quantity was not recognized, although frequently reported in

psychometric literature (Guilford, 1954, p. 7; Torgerson, 1958,

p. 26). In the typical example of length, for any two physical

objects the successive laying off of the second object some

finite number of times results in the second object going

farther than the first. Popular notion assumes (as early

Greek mathematicians did), that the resulting length could be

reported as whole numbers only if the units were made small

enough. This assumption of equality of minute units can be

disproved on the basis of the Pythagorean theorem. Accepting

this to be true, the actual length of observed differences

(when compared with some standard) is then its magnitude.

Consider a case of lines compared by a set of standa,

as shown in Table 2.1. Dimensionality is given by a definition
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Table 2.1. Computation of magnitudes of a set of three lines

A, B, C as compared with metric-system based standards.

S
1
=lcm

'

S
2
=2cm

'

and S =3cm.

S1

S
2

S
3

A

B

S 1A =0 S
2
A=0 S

3
A=0

s
1
B=1 S

2
B=1 S

3
B=0

s1C= 1 S
2
C=0 S

3
C=0

Table 2.2 Ordered magnitudes of lines A, B, C as compared

with a set of metric standards Sp S2, S3 from Table 2.1.

B

LINES

C A

U)

ra

S
1

1 1 0

S
2

1 0 0

S
3

0 0 0

MAGNITUDES 1 0
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of a line, magnitude is reported as 1 if line is greater than

a particular standard, and as 0 if line is smaller than a

standard. By reordering lines according to their increasing

magnitudes, a Guttman-type data matrix (Guttman, 1941) can be

obtained, as shown in Table 2.2. Magnitudes of lines drawn

in Table 2.1 are 2, 1, and 0 for lines B, C, and A respectively.

Quantities of these lines can be reported as .5 cm (A), 2.5

cm (B) and 1.5 cm (C).

In the measurement of length, this principle of compari-

son with a standard is rather straightforward and is accomplished

by the direct observation of unit concatenation in one-dimen-

sional serial order. Both order and dimensionality therefore

need not be expressed in logical terms; they are overtly pres-

ent and covertly assumed. This is usually not true in the

case of psychological measurement, where both order and dimen-

sionality are frequently initially unknown.

Difference relation and measurement in psychology.

The significance of the difference relation for measurement

in psychology was recognized by Feehner (1871), who introduced

the concept of "juxtapositions of cognitions" as a basic unit

of the method of pair comparisons. As an introduction into the

scope and problems of this method let us consider the hypothet-

ical reconstruction of steps taken by Friedrich Moh in 1820 to
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FRAME 2.1. THE N=1 PAIR COMPARISONS EXPERIMENT.

Below is a series of statements pertaining to the hardness of
minerals. Please record your observations as "yes" or "no"
regarding the mineral surface changes.

Is diamond scratched by topaz?

Is quartz scratched by topaz?

Is gypsum scratched by topaz?

Is topaz scratched by diamond?

Is quartz scratched by diamond?

Is gypsum scratched by diamond?

Is topaz scratched by quartz?

Is diamond scratched by quartz?

Is gypsum scratched by quartz?

Is topaz scratched by gypsum?

Is diamond scratched by gypsum?

Is quartz scratched by gypsum?

Table 2.3. The data matrix.

T D Q G E

T 0 0 1 1 2

D 1 0 1 1 3

Q 0 0 0 1 1

G 0 0 0 0 0

Table 2.4. Reordered data matrix.

D T Q G E

D 0 1 1 1 3

T 0 0 1 1 2

Q 0 0 0 1 1

G 0 0 0 0 0

E 0 1 2 3 6
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develop his scale of hardness of minerals. His measurement

was based on the direct observations of results of the

"scratching" operation. The domain sampled was the class of

all minerals. The property measured was conceptualized as

hardness and was directly accessible to his empirical observa-

tions.

Imagine that Friedrich Moh's original sample consisted

of gypsum, quartz, topaz, and diamond (G, Q, T, D), and that

he was at the same time the subject and observer in this N=1

pair comparisons experiment. This experiment could be arranged

as shown in Frame 2.1. It may be observed that nothing is

assumed but the ability to observe a change and record its

occurrence. The data matrix for this experiment can be con-

structed if we adopt a convention that "YES" will be assigned

the value 1, and "NO" the value of 0 if the change observed

was in row-column direction (Table 2.3). The meaning of the

elements of this data matrix is direct. Three changes of

surfaces were observed when scratching was done with a diamond,

two when with topaz, etc.

Elements of both the data matrix (Table 2.3) and the

reordered data matrix (Table 2.4) are magnitudes. Table 2.4

was reordered according to decreasing row and increasing

column marginals, i.e. in such a way that marginal apex will

be located in the lower right corner and the matrix apex in

aw
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FRAME 2.2. THE RATING SCALE EXPERIMENT

Below is a series of the names of various minerals accompanied
by rating scales. Please indicate the extent to which you
feel every mineral could be characterized as hard or soft.

TOPAZ

soft: : : :X: :hard

DIAMOND

soft. . . . .X.hard

QUARTZ

soft: : : :X: :hard

GYPSUM

soft.X. . . . .hard

Table 2.5. The data matrix.

T D Q G

Friedrich Moh 4 5 4 1

11nUln 4..-m.- ....y. The matrix of magnitudes.

T D Q G E

T 0 0 0 1 1

D 1 0 1 1 3

Q 0 0 0 1 1

G 0 0 0 0 0
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the upper right corner. As will be observed, both data

matrices of Frame 2.1 are identical to an ideal Guttman-type

data matrix, i.e. scales derived from their marginals are

ordered in one dimension.

In the next experiment, which will be referenced as the

rating scale experiment (Frame 2.2), a prior experience of

observation of change is assumed. The data matrix of this

experiment is recorded in Table 2.5. The meaning of the ele-

ments of this data matrix could be explicated as "hard",

"very hard", "hard", and "soft". This meaning is encoded

into the data matrix (Table 2.5) as a quantity. Let us now

reconstruct the previous hypothetical experience this particu-

lar subject had with this sample of minerals. If we adopt a

convention that magnitude "greater than" will be recorded

as "1" and magnitude "less than" as "0" and compare all ele-

ments of the data matrix in Table 2.5, the resulting matrix of

magnitudes will be as shown in Table 2.6. Compare the "hard-

ness" scales from both experiments: the N=1 pair comparison

experiment yielded the scale of magnitudes [0,1,2,3;G,Q,T,D],

which can be directly interpreted as the increasing number of

changes observed. The scale of quantities from the rating

scale experiment [1,4,4,5;G,T,Q,D] is clearly dependent on the

size of the rating interval, and the reconstructed scale of

magnitudes [0,1,1,3;G,Q,T,D] is influenced by this 1 to 5

rating interval.
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FRAME 2.3. THE N=1 DICHOTOMOUS ITEMS EXPERIMENT.

Below is a series of statements pertaining to the hardness
of minerals. riease indicate if you agree or disagree with
these statements.

Is the topaz hard? YES NO

Is the diamond hard? YES NO

Is the quartz hard? YES NO

Is the gypsum hard? YES NO

Table 2.7. The data matrix.

T D Q G

Friedrich Moh 1 1 1 0

Table 2.8. The matrix of magnitudes.

T D Q G Z

T 0 0 0 1 1

D 0 0 0 1 1

Q 0 0 0 1 1

G 0 0 0 0 0
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FRAME 2.4. The experiment illustrating the effect of increased
variance on a matrix of magnitudes.

Below you will find a series of statements pertaining so the
hardness of minerals. Please indicate if you agree or disagree
with these statements.

1) Is the topaz hard? YES NO

2) Is the diamond hard? YES NO

3) Is the fluoride hard? YES NO

4) Is the gypsum hard? YES NO

Table 2.9. The data matrix.

T D F G

Friedrich Moh 1 1 0 0

Table 2.10.

T D

The matrix of

F GE
magnitudes.

T 0 0 1 1 2

D 0 0 1 1 2

F 0 0 0 0 0

0 0 0 0 0
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The third type of administration of our "hardness" test

will now be discussed. (Frame 2.3.) The typical data matrix

would probably look like the one in Table 2.7 and our recon-

struction of previous comparisons will yield the matrix of

magnitudes as shown in Table 2.8. The resulting scale of

quantities [1,1,1,0;T,D,Q,G] is the least similar to the scale

constructed by the pair comparison method [0,1,2,3;G,Q,T,D].

It need not be so. The improvement of sample composition,

e.g. exchanging quartz for fluorite (F), could change the data

matrix of Table 2.7 into a data matrix reported in Table 2.9

with its corresponding matrix of magnitudes shown in Table

2.10 of Frame 2.4.

Endorsement frequency of monotone items is "a joint

function of: (a) the perceived boundary established by the

item on the attribute continuum, and (b) the individual's per-

ceived position on this continuum." (Goldberg, 1963, p. 473).

Previous "improvement" of the sample composition extended

"boundaries" of our test, which was reflected in increased

variance (information) content of the matrix from Table 2.10.

By extending our sample as in Table 2.11, we have Included

individuals whose attitudes (and therefore their positions on

the attribute measured) differ. This is reflected in an in-

crease of information content of the reconstructed matrix of

hypothetic pair comparisons as seen in Table 2.12 (Frame 2.5).

if
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FRAME 2.5 THE N=.3 DICHOTOMOUS ITEMS EXPERIMENT

Below you will find a series of statements pertaining to the
hardness of minerals. Please indicate if you agree or disa-
gree with these statements:

1) Is the topaz hard? YES NO

2) Is the diamond hard? YES NO

3) Is the fluoride hard? YES NO

4) Is the gypsum hard? YES NO

Table 2.11 The data matrix.

T D F G

Subject E 1 1 1 0

Subject M 1 1 0 0

Subject A 0 1 0 0

Table 2.12

T D

The matrix

F G

of magnitudes.

T 0 0 1 2 3

D 1 0 2 3 6

F 0 0 0 1 1

G 0 0 0 0 0
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As compared with the matrix of magnitudes based on

direct observations of changes by a single observer in the

N=1 pair comparisons experiment, the matrix of magnitudes

in the N=3 dichotomous items experiMent contains magnitudes

due to joint (by two or more subjects) observation of change.

Also, in comparing the scales derived from the N=1 pair com-

parisons experiment and the N=3 dichotomous items experiment,

the former scale [3,2,1,0;D,T,Q,G] increases in steps propor-

tional to the distance (in magnitude units) between observed

minerals. The units of the latter magnitude scale [6,3,1,0;D,

T,F,G) are products of joint variation between observations

and observers. If we are interested in scaling observations,

the variance between observers becomes redundant. It should

be removed from the final scale and used only for purposes

of statistical estimation.

Generation of the difference relation.

Imagine the smooth (D) and scratched, i.e. not smooth

(D) surface of a mineral D. If no operation on these surfaces

is taking place, these two types of surfaces are mutually

exclusive. The operation of "scratching" can be described

as taking place in a series of time intervals tl, t2, ti,

t
n

. Intersection I of smooth and scratched surfaces can

be written as



lim 1e = Dt
1

. 15 where e = ti
-1 -ti

i-1
t
i

;

e 0
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(2.1)

i.e. as a limit of differences between two temporal intervals

of the scratching operation, when the change of the surface

actually takes place and the surface is both "smooth" and "not

smooth".

In matrix notation, this operation can be written as a

matrix of magnitudes M
qxq

(Table 2.12), generated by products

of its component vectors of the data matrix D
rxq

(Table 2.11),

as shown in equations 2.2, 2.3, and 2.4.

M
qxq

= lC
qxq

+ 2
C
qxq

+ +
i
C
qxq

+ +
r
C
qxq

(2.2)

where

i 1
C
qxq

= D
lxq

. D
lxq

and

=
i
D + U

lxq
(mod 2)

(2.3)

(2.4)

Component matrices
i
C
qxq

of the matrix of magnitudes M
qxq

are composed out of major products of its constituent vectors

i
D
lxq

and iDlxq. Elements of the vector
i
D
lxq

of a subject i

can be imagined as standing for hypothetical observations of

a scratched surface.

J
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1--Reflected vector
i
D
lxq

can be written as D
lxq

. This

reflection is described in equation 2.4 as an addition of

a unit vector U
lxq

in modulo two. Addition of this modulo

two unit vector changes elements of the vector
i
D
lxq

from

one to z. ro and vice versa. Reflected vector
l
D
lxq

can be

imagined at our conceptual level of hypothetical observations

as describing observations of a smooth surface.

Reconstruction of components
1
C
qxq of the matrix of

magnitudes M
qxq for subjects of the dichotomous items experi-

ment (Tables 2.11 and 2.12) is done in Table 2.13 a,b,c.

bpplication of principles developed in equations 2.2,

2.3, and 2.4 to entities of a data matrix D
rxq

leads to the

following complementary system of equations:

q
M = "Crxr rxr

where

1
Jc - JD

rxl
.

rx1rXr

(2.5)

(2.6)

Generation of matrices of magnitudes from their ipsative

and reflected component vectors as described by equations 2.2

through 2.5 is based on a primitive concept of binary variation

as a number of one-zero changes. This operation can be also

conceptualized as a product of a matrix and its negation, which



Table 2.13 a, b, c. Matrices of magnitudes
of their constituent vectors. Responses of
A to dichotomously scored monotone items T,
from Table 2.11.

SUBJECT E:

1

1

1

0

SUBJECT M:

C

0

L °-

SUBJECT A:

0

0

E 0

F0

0

ii

1

1]

1

=

=

=

0

0

0

0

0

0

0

1

0

0
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as major products
subjects E, M, and
D, F, and G are

0 0 1

0 0 1

0 0 1
(a)

0 0 0

...ma...

0 1 1

0 1 1

0 0 0
(b)

0 0 0

0 0 0

0 1 1

0 0 0
(c)

0 0 0
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in a static sense should logically result in an empty set.

This contradiction was resolved by postulating the inter-

section of these otherwise mutually exclusive sets as taking

place in a temporary infinitesimal interval, when both sets

are at the same time both A and non-A; i.e. when the change

transpires.

Difference relation, information, and variance.

The case in which the variance is computed for a variable

that takes on only two possible values, as in the case of a

pass-fail test item, the variance can be computed as

2
a
x
= mn (2.7)

where m equals the proportion of people which pass the item x

and n to the proportion of persons which fail the item x. In

this case n = 1-m. (cf. Nunnally, 1967, p. 106). If we define

proportion of "ones" (m) of a variable vector of a lxq order

as a/q and proportion of "zeros" (n) of the same vector as

b/q, we can write equation 2.7 as

x
= ab

2
q

(2.8)

As may be observed, order of square matrix
i
C
qxq

from

equation 2.3 is equivalent to the denominator of the right

term of the equation 2.8. Magnitude of this matrix is at the

same time determined by the product ab (the numerator of equation

2.8).

'1k)
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Consider, as an example, vector
lxq

of the Table 2.13a;

proportion of "ones," m = 3/4, proportion of "zeroes," n = 1/4

and variance a
2

(equation 2.7) mn = 3/16. Magnitude of the

vector
1
D
lxq is defined by elements of the 1

C
qxq

matrix and

at the same time defined as 3 by the numerator of equation 2.8.

Order of this matrix, determined by the denominator of equation

2.8, equals 4 times 4.

Consider again the matrix of magnitudes from Table 2.13a.

An alternative way to obtain this matrix is to view vector

1
D
lxq as a marginal referent for both dimensions of the square

matrix
1
C
qxq

, i.e. to define margins of the iC
qxq by

i
D 1

and
:1

i
d
2

dl
i

d2
C.D

lxq
, where D

lxq
= D

lxq
. If we define elements 1

d '

.

d
1 2

i
dl

i
d2

of the matrix 1C
qxq

as equal to 1 if D
lxq

> D
lxq

and as

equal to 0 otherwise (Table 2.14), the resultant matrix will

be identical to the matrix obtained by operations described

in equations 2.3 and 2.8.

The information content of the
i
C
qxq

matrix can be

computed as

m k
H = E E C

ea
e=1 a=1

(2.9)

where H stands for the amount of information in bits. For

our example (Table 2.14) the information content H of the

1
C
qxq matrix equals 3 bits.

im
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Table 2.14. Schematization of the concept of binary variance
as a number of one-zero changes "within" a variable.

1
D
d
1

lxg

1 1

1
d
2

D
lxg

1 0

C
i i
d .1' d

2

i
d d

= 1 if D
lxg

> D
lxg

i
d
1

d
2= 0 if D < D

lxg lxg

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0



Chapter 3

RELATIONS BETWiill COGNITIVE, LOGICAL, AND GEOMETRIC STRUCTURES

Cognitive and logical structures.

The notion that a study of cognitive systems is possible

if formal systems reflecting natural systems are scrutinized,

was expressed by George Boole in his "Investigation of the

Laws of Thought." He observes that "whether we regard signs

as the representatives of things and of their relations, or as

the representations of the conceptions and operations of the

human intellect, in studying the laws of signs, we are in

effect studying the manifest laws of reasoning." (Boole, 1854,

p. 26). Boole's proposal can be reversed and an attempt made

to use known general laws of cognitive processes for analysis

of heuristic formal systems.

Assume that the forms, provided by the earth, influenced

formation of our cognitive systems. Suppose then, tha'

language is used as an instrument for manipulation of signs

and their mutual interrelationships. The body of knowledge,

describing operations on signs congruent with "normal" func-

tioning of our cognitive systems (adequately reflecting the

outside reality) is usually treated as a subject of formal

logic.

Corollaries to this argument connecting "normal" type
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of operations on signs with a correct reflection of objective

reality are findings pertaining to "abnormal" types of cog-

nitive functioning. Thus e.g. Sullivan's (1953) prototaxic

and parataxic types of cognitive processes "have no necessary

connections among themselves and ... are not logically related."

(Hall and Lindzey, 1957, p. 140).

Logic is concerned with forms; forms emerge from abstracted

properties of contents of experience. Alfred North Whitehead

comments on this process: "we ascribe the origin of these

sensations to relations between the things which form the

external world [and] we want to describe the connections be-

tween these external things in some way which does not depend

on any particular sensations, nor even on all the sensations

of any particular person [...] thus it comes about that, step

by step, and not realizing the full meaning of the process,

mankind has been led to search for a mathematical description

of the properties of the universe, because in this way only

can a general idea of the course of events be formed, freed

from references to particular persons or to particular types of

sensation." (Whitehead, 1911, pp. 4-5). In this process, con-

crete things are replaced by formalized elements of variable

meanings.

Any symbolic structure can be thought of as a structure

of propositions if it contains a symbol understood to represent
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a relation. A proposition asserts that a certain relation

holds among certain elements. The dominance matrix described

earlier can be thought of as a symbolic structure describing

relations between propositions contained by elements of its

generic data matrix: a sentence of ordinary language can be

considered a proposition if it describes some relation.

Every proposition is either true or false. This property is

the only connecting link between separate propositions as con-

sidered from a formal logic point of view. Thus two sentences

are considered algebraically not equal if they are not logically

equivalent. Two sentences are not equal if one has the truth

value "true" and the truth value of the other is "false", or

vice versa. Thus, in a formal sense, a matrix of magnitudes

derived from a binary data matrix, may be considered a descrip-

tion of relations between the data matrix elements.

The sentence "I stay in the background" (Pemberton, 1952)

contains a variable "I"; it can be regarded as a function of a

particular person i from a set of persons 1,2, ...,i, n

encountering this sentence. Because the function f(i) becomes

a definite sentence (a proposition) for each value of i, it is

called a propositional function. The value of each function

f(i) can be denoted f(in) so that, for example, f(i4) means

that person number four stays in the background, which can

have the truth value of one ( "true ") or zero ("false").

r



A calculus of bivalued truth values consists of sixteen

propositional functions, summarized in Table 3.1. These

functions can be classified as reflexive and aliorelative

classes. A relation is reflexive provided that its truth

value is a function of a singular term. A reflexive class

of truth functions includes the relations of tautology Ala,

40

contradiction A&A and relations such as A&A, A&A, B&B and B&B.

The truth values of aliorelative functions depend on the

combination of truth values of their nonsingular terms. A

relation is aliorelative if no term has this relation to it-

self. Given any serial relation (say R), no term must pre-

cede itself. (i.e. xRx is not valid.)

Aliorelative functions can be further subdivided into

order-dependent and order-independent classes. The order-

independent class of aliorelative functions consists of

functions for which the order of their generic arguments

does not make a difference, i.e. relations which are both

aliorelative and symmetric, as the relations of conjunction,

disjunction, equivalence and their converses.

The order-dependent-aliorelative functions are asymmetric.

This class of propositional functions contains the family of

implicative functions, i.e. implication, negative implication,

and their converses. As depicted in Table 3.1, if we delete

all reflexive functions, the family of implicative functions

(10
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will be the only one showing one-zero changes reflecting the

one-zero changes in their arguments, a property called in

other contexts information or variance.

Dimensionality and order.

Russell (1903) arrived at the definition of the order

relation as the relation having asymmetric, transitive, and

connected properties. Magnitude is a primitive term with

respect to asymmetry, which is the development of the concept

of magnitude at the functional level. The formal definition

of asymmetricity is accomplished by the introduction of the

concept of the square of a relation.

The square of a relation is a relation between two terms

that holds between two terms and their intermediate term.

Asymmetric relation then can be defined as a relation with an

aliorelative square. In a similar vein, transitive relation

can be described as a relation which contains its square.

The property of connectedness can be described as the

possibility of shared-boundaries-arrangement. The formal

definition given by Hempel is "if a does not coincide with b,

then a precedes b or b precedes a" (Hempel, 1952, p. 59). The

classical example of a nonconnected set of numbers is a s,lt

of complex numbers. Every complex number is jointly defined

by its real and imaginary parts. It is impossible to decide
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which pact should be used for generation of an ordered pro-

gression in exclusion of the other part. For this reason it

is impossible to order a set of complex numbers in one dimen-

sion.

In Euclidian geometry, a unidimensional space is imagined

as a line, defined as a "breadthless length." (Euclid, T. L.

Heath's edition, 1926, p. 153). A logical definition of a

line, avoiding equivocality of "breadthless" is possible; this

definition is based on properties of an order relation. There

are several ways to generate an order relation (Russell, 1903,

pp. 199-233, 371-380). Imagine a set of elements where every

element e
i
is either greater or smaller (as recorded with

respect to e singular property) than another element ei.111.

Mutual relations between a set of such elements will then be

asymmetrical and transitive. Any pair of such elements (ei;

ei) can be represented as a segment. Addition or subtraction

of these segments, representing singular property, will result

in a configuration of points having one degree of freedom,

i.e. in a line in one dimension. A series of two dimensions

can be generated if it is possible to divide the above set of

elements into two subsets i and j; where every pair of each

subset (e
i'

e
1.

) and (e j; e
i+n

) can be arranged into asymmetrical
4-n

and transitive series. The formal definition for generation of

n dimensional series is given by Russell (1903, p. 375) as
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follows: "Let there be some series u
1,

whose trms are all

themselves serial relations. If xi be any term of ul, and

x
2

any term of the field of x
1,

let x
2
be again a serial

relation, and so on. Proceeding to x3, x4, etc. let xn_1,

however obtained, be always a relation generating a simple

series. Then all the terms x
n

belonging to the field of any

serial relation x
n-1'

form an n-dimensional series."

A spatial model of these n-dimensional series can be

therefore constructed from the potentiality of the data matrix

for order. The set of dimensions of a given data matrix is

equivalent to the set of ways data can be ordered. In this

sense, "dimensions (are] a development of order." (Russell,

1919, p. 29).

Logical and geometric structures.

As seen in the previous section, order can be defined

as a condition of logical arrangement among elements of a

data matrix. Consider the possibility of an order structure,

reflecting a simple logical (and ultimately cognitive) structure.

One of the basic logical structures was described by Aristotle

as a syllogism. A traditional syllogism can be written as a

conjunction of implication functions, i.e. as (A 4 B) & (B C).

This implicative chaining is at the core of both syllogistic

reasoning and the generation of a straight line-dimension
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(RI;ssell, 1903, pp. 382-384). The process of exploring the

logical implications is thus a form of research and discovery,

i.e. a process of valid inferences based on implicative chain-

ing (Cohen and Nagel, 1934).

Table 3.2 illustrates the generation of a dimension by

one type of cognitive structuring of reality, formalized by

the rules of syllogistic reasoning. Table 3.2 was constructed

by considering all possible arrangements of truth values for

arguments A, B, and C in step 1, recording the truth values

of implications for the arguments A -3- B in step 2 and for

arguments B C in step 3. Truth values generated in steps

2 and 3 were joined by the conjunctive function in step 4.

As designated earlier, implication (-0 is false ("0") only if

the cJnclusion is false ("0") and premise true ("1"). This

corresponds at the data level (step 1) to the response pattern

(1,0). Conjunction (&) is true only in the case of a (1,1)

response pattern.

It is feasible to imagine the set of all possible argu-

ments of truth values for arguments A, B, C as a set of all

possible response patterns (a plenum), which can be divided

into unidimensional subsets of response patterns. The subset

of response patterns compatible with the logic function (A B)

& (B C) was formed in step 4, where compatible response

patterns (i.e. patterns leaving their corresponding values in
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Table 3.2 Generation of a dimension by a logic function

(A B) & (B C). A 4 .Pr dimensional plenum of three

variables was constructed la step 1. Its one dimension, re-

corded in step 5, was extra,ted in steps 2, 3, and 4.

POSSIBLE
RESPONSE
PATTERNS

LOGIrAL STRUCTURE
COMPATIBLE
RESPONSE
PATTERNS

A B C (A -÷ B ) & (B -+ C) A B C

1 1 1 1 1 1 1 1 1

1 1 0 1 0 0

1 0 1 0 0 1

1 0 0 0 0 1

0 1 1 1
1 1 0 1 1

0 1 0 1 0 0

0 0 1 1 1 1 0 0 1

0 0 0 1 1 1 0 0 0

Step Step Step Step Step
1 2 4 3 5
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step 4 equal to "1") were determined and recorded in step 5.

The set of response patterns, generated by the function

(A 4- B) & (B C) is equivalent to a Guttman-type data matrix,

i.e. to such a matrix whose marginal sums would conform with

an ideal Guttman scale (Guttman, 1944). Unidit nsionality

of this type of data matrix was proven by Torgerson (1958,

p. 312).

Since upper (1,1,1 ...) and lower (0,0,0 ...) boundaries

of Guttman scales transmit no information, a simpler model of

syllogistic cognitive structure can be constructed, taking

into account only one-zero and zero-one binary tuples; i.e.

this type of analysis is based on frequencies of the negative

implication function and its converse. The negative implication

is true only in the case of the (1,0) ordered tuple and false

in the case of tuples (1,1), (0,1), and (0,0). The converse of

negative implication is true only in the case of the (0,1)

ordered tupe and false in the case of tuples (1,1), (1,0), and

(0,0). This model is computationally simpler and results in

series of Guttman scales equivalent to the model schematized

in Table 3.2.

Conceptual relations between order and factor analyses.

The idea to consider the logic functions of propositional

calculus as variance-generative is derived from Boole (1854)

and can be ultimately traced to Aristotle: "...for truth and
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falsity imply combination and separation ..." (Aristotle,

W. D. Ross edition, 1927, pp. 7-8). It is possible to

observe the affinity uf this notion of "combination and

separation" as necessary conditions for t derivation of

logical truth or falsity with those of i.Aormation theory

(Shannon and Weaver, 1949), defining information as implying

change.

The postulation of correspondence between cognitive

processes and logical functions is credited to Aristotle,

who considered the rules of syllogism and its conversion into

(logical) figures to define elementary processes of all

reasoning (Jaeger, 1923). Boole's (1854) analysis of rela-

tions between premises of syllogism was motivated by his con-

viction that this type of activity will ultimately lead to

a general formula for solving abstract problems.

Leibnitz, searching for a universal method to "enhance

the capabilities of the mind" (Leibnitz, P. P. Wiener's edition,

1951, p. 23) proposes to reduce this problem to the "solution

of equations whose roots must be extracted analytically by

means of calculation, or geometrically by means of the inter-

section of loci" (Leibnitz, P. P. Weiner's edition, 1951, p. 5).

Later he remarks that "Mind, not contented with agreement, con-

ceives the application of relations containing a certain

order" (Leibnitz, P. P. Wierner's edition, 1951, p. 253).
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Note that the former proposed solution to the problem of

analytic discovery is in essence the description of the process

of extraction of eigenvalues in factor analysis, where the

roots of a characteristic equation define the initial axes of

the test space.

As a matter of fact, these historical antecedents and

analogies were secondary with respect to our initial effort

to translate the characteristic equation of factor analysis

into formal logic functions. The initial search centered

around the possibilities of supplanting the roots of a char-

acteristic_equation, determining the initial position of a

dimension (lines) in a multidimensional space by means of linear

scales derived from Guttman-type data matrices. This in turn

led to our reconsideration of the Spearman tetrad-difference

criterion and the Thurstone matrix algebra formulation of a

tetrad as a second order minor expansion.

Thurstone describes his matrix algebra extension of the

tetrad criterion in the preface to the "Multiple Factor Analysis":

"In 1931 I decided to investigate the relation between multiple

factor analysis and Spearman's tetrad differences. When I wrote

the tetrad equation to begin this inquiry, I discovered that

the tetrad was merely the expansion of a second-order minor, and

then the relation was obvious. One might speculate as to

whether multiple-factor analysis would have developed earlier
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if this interpretation had been stated earlier. If the

second-order minors must vanish in order to establish a single

common factor, then must the third-order minors vanish in

order to establish two common factors, and so on? To have put

the matter in this way would have led to the matrix formulation

of the problem much earlier, as well as to the immediate develop-

ment of multiple-factor analysis. Instead of dealing with the

proportional columns and rows of a hierarchy and the vanishing

tetrads, we now deal with the same relations in terms of the

properties of unit rank, namely, proportional columns and rows

and vanishing second-order minors." (Thurstone, 1947, p. vi.)

Spearman describes his criterion of "tetrad differences"

in the following words: "The start of the whole inquiry was a

carious observation made in the correlations calculated between

the measurements of different abilities. These correlations

were noticed to tend towards a peculiar arrangement, which could

be expressed in a definite mathematical formula

r
ap

x r
bq

- r
aq

x r
bp

= 0.

This formula has been termed the tetrad equation and the value

constituting the left side of it is the tetrad difference. An

illustration may be afforded by C 4n1lowing imaginary correla-

tions between mental tests. For instance, let us try the

effect of making:
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Table 3.3 Hypothetical correlations between four mental

tests. (Reproduced from Spearman, 1932, p. 74).

Oppo- Comr Memory Discrim- Cancel-
sites pletion ination ation

Opposites .80 .60 .30 .30

Completion .80 .48 .24 .24

Memory .60 .48 .18 .18

Discrimination .30 .24 .18 .09

Cancellation .30 .24 .18 .09

Co i
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a denote Opposites, b denote Discrimination, p denote

Completion, and q denote Cancellation.

From the table of correlations above, we see that r
ap

will mean

the correlation between opposites and completion, which is .80.

Obtaining in a similar fashion the other three correlations

needed, the whole tetrad criterion becomes

.80 x .09 - .30 x .24 = 0

which is obviously correct. And so will be found any other

application whatever of the tetrad equation to this table."

(Spearman, 1932, pp. 73-74).

Trying to link Spearman's criterion of tetrad differences,

Thurstone's notion of the rank of the matrix as its dimension-

ality indicator, and the unidimensional Guttman scale, a dis-

crepancy arose. The Guttman scale was considered unidimensional,

but its generic data matrix was not. As a matter of fact,

Guttman (1954) based his theory of scalable attitudes on the

principal component of his data matrix and maintained that "a

sample of ten dichotomous items from a perfect scale can yield

at most eleven distinct ranks. In the universe of item, there

may be an infinite number of distinct ranks." (Guttman, 1950,

p. 296).

Even though Torgerson called attention to the fact that

"the matrix of interitem tetrachorics [in a perfect Guttman
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scale] is a matrix of positive ones" (Torgerson, 1958,

p. 312), he considered this finding to be important mainly

with respect to properties of its constituent types of

correlation coefficients: "such cannot be said, however,

of the matrix of point correlations between items, [in

which the] rank will be equal to its order." These find-

ings were recognized by Lord and Novick: "the number of

common factors in a correlation matrix depends on the

type of correlation coefficient used. It also depends on

how the item scores are transformed before the correlations

are computed." (Lord and Novick, 1968, p. 382). The same

authors recognize the priority of the "dimensionality of

the complete latent space" over the number of common factors

as derived by factor analysis, but at the same time concede

that this problem "has not been completely solved." (Lord

and Novick, 1968, p. 382).

During the attempts to increase the amount of information

conveyed by the ideal Guttman scale we tried various monotonic

transformations of its elements. Logical intersections of

the marginals seemed to be promising because of their compati-

bility with the overall sequential arrangement of the Guttman

type data matrix. (Table 3.4 and 3.5) A routine check of

the tetrad of this transformed matrix (Table 3.5) showed it

to be zero:
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Table 3.4 Guttman-type

A B C

data matrix and its marginals.

3

1 1 1 3

2

1 1 0 3

1

1 0 0 3

0

0 0 0 0

3 2 1

4 4 4

Table 3.5

marginals.

A matrix of products of Guttman-type data matrix

9 6 3

12 12 12

6 4 1

12 12 12

3 2 1

12 12 12

0 0 0
12 12 12



9 6

12 12

= 0

6 6

12 12

9 x 6 6 x 6

12 x 12 12 x 12

36 36

144 144

0 = 0

= 0

= 0
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This finding, connecting the transformed Guttman-type data

matrix and Spearman's tetrads (and thus Thurstone's ranks)

fostered our belief that the reconceptualization of the char-

acteristic equation in terms of formal logic structures is

possible. A similar belief was expressed by Thurstone himself,

who considered the reconceptualization of the factor analytic

model similar to order analysis, as one of the possibilities

for the future development of the factor analytic method:

"Analysis of successive differences [should] lead to the factor

pattern, which would indicate the number of parameters involved

in the variance of each test. That is the main object of factor
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analysis [...) in teasing out what we have called the under-

lying order of a new domain" (Thurstone, 1947, p. xiv).



Chapter 4

THE ELEMENTS OF ORDER ANALYSIS

The prerequisite and disconfirmatory relationships.

There are several ways to search for relationships between

the data matrix elements. It is possible to analyze every

method in terms of its underlying and implicitly assumed logi-

cal constants and functions. Within the system of logical

constants, various constituent relationships involving logical

connectives as e.g. "and," "if and only if," "either," "either...

or," may be employed. As seen earlier, the family of implica-

tion functions is dimensionality-generative and therefore of

interest to behavioral researchers. The logical connectives

of the family of the implication functions (Table 3.1., d, f,

m, o) can be written as (d) "is a prerequisite to," (f) "implies,"

(o) "is not a prerequisite to," (m) "does not imply."

Within the family of implicative functions, it is possible

to move from one function to another by interchanging or reflect-

ing variables within the systems. Close scrutiny of this family

will also reveal that (1,0) and (0,1) arguments of these func-

tions are variance-generative, while the (1,1) and (0,0)

tuples are important in the determination of the orientations

of variables within the system. If no attempt to optimize a

variable's orientation is made, the simplest functions suitable
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for analysis are the functions of negative implication and its

converse. These two functions differ only in their (1,0) and

(0,1) tuples. The (1,0) tuple will be called a prerequisite

(or confirmatory) response pattern. The (0,1) tuple will be

called a disconfirmatory response pattern.

The logic diagram of a test space (the nonmetric model A).

Using only the prerequisite and disconfirmatory response

patterns, a logic diagram (tree) of manifest structures can be

constructed. Before formalizing this process, let us consider

a simple example.

A twelve item rating scale of guilt, constructed ad hoc,

was administered to fifteen students enrolled in a general

psychology course at the University of Minnesota. Instructions

were printed in caption on the rating scale: "Imagine that you

find yourself in the situations described below. Rate how you

would feel if it happened. Be frank." The answer choices to

each item were the following:

: very bad : a little bad : not too bad : don't care :

The items were scored in a bivalued manner with "1" being given

to either of the first two choices and "0" being given to either

of the last two choices. Table 4.1 lists the items presented

to the subjects. The data matrix is presented in Table 4.2.

First, write randomly letters A through L on a piece of

paper as:
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Table 4.1. The guilt scale.

A. Drinking too much

B. Shoplift

C. Cheat on exams

D. Have an extramarital affair

E. Gossip

F. Don't go to church on Sunday

G. Have an homosexual experience

H. Lie to parents

I. Lie on income tax teturns

J. Being caught as a Peeping Tom

K. Steal a book from library

L. Steal a book from a friend
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Table 4.2 Data matrix for twelve-item scale of guilt for

sample of fifteen subjects.

Subject
Item ABCDEFGHIJKLtotalsrow

1 1 1 1 1 0 0 1 1 1 1 1 1 :',0

2 I 1 0 1 1 0 1 0 1 1 1 1 9

3 1 1 1 1 0 0 1 1 1 1 1 1 10

4 0 1 0 0 0 0 1 0 0 1 0 1 4

5 0 0 1 0 1 0 1 0 0 1 1 1 6

6 1 1 .1 1 1 0 1 1 1 1 1 1 11

7 0 1. 1 1 1 0 1 0 1 1 1 1 9

8 1 0 1 1 0 0 1 0 0 0 1

9 0 1 1 0 0 0 1 1 0 0 0 1 5

10 1 0 0 0 0 0 1* 0 1 1 0 1 5

li 1 1 0 1 0 0 1 0 0 1 0 1 6

12 0 1 0 1 1 0 0 0 1 1 1 1 7

13 C 1 1 1 1 0 1 1 0 1 0 1 8

14 1 1 0 1 0 0 1 0 1 1 1 1 8

15 0 1 1 1 0 0 1 0 1 1 1 1 8

column

`:otals
7 13 8 11 7 0 13 6 9 13 9 15
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Next, start tree construction with item A and Subject 1

(Table 4.2). For Subject 1, item A will be a prerequisite

for items E and F (response patterns "1,0"). For Subject 2,

item A will be a prerequisite for items C, F, and H. For

Subject 3, item A will be a prerequisite for items E and F.

Finally, for Subject 4, who answered item A in a negative

sense, items B, G, J, and L will be the prerequisites. Item

A is therefore the prerequisite, for items E, F, C, H, B, D,

K, and I (read across subjects). Items B, G, J, L, C, E, K,

D, I, H are prerequisites for item A. The prerequisite pattern

"1,0" conflicts with the disu.airmatory patterns "0,1" for

all items except item F. We now can draw a line connecting

items A and F.

The preceding steps can be supplanted by looking for

patterns of zeros across all subjects: (1) start with the

first row, containing zero in the scrutinized item's column

(2) write down all items containing zero in this row (3)

find next row containing zero in the scrutinized item's

column (4) read across this row and underline every prev-

iously marked item with "1" in this row (5) continue to
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the last row (6) start a new item, repeat steps one through

six until all items are scrutinized (7) draw lines,

connecting scrutinized item with items not underlined (8)

rearrange items so their connecting lines do not cross. Steps

(1) through (6) are written below:

ITEM A [C,D,E,F,H,I,K] (A F)

ITEM B [A,D,F,H,T] (B 4 D,F,H)

ITEM C [F,H] (C 4 F)

ITEM D [A,C,E,F,H,I,K] (D 4 F)

ITEM E [F] (E 4 F)

ITEM F (F 4 NONE)

ITEM G [A,C,F,I,J,K] (G 4 A,C,F)

ITEM H [C, F] (H 4 F)

ITEM I [A,C,D,E,F,H,K] (I 4 F)

ITEM J [A,C,F,G,I,K] (J A,F,I,K)

ITEM K [A,C,D,E,F,H,I] (K 4 F)

ITEM L (ALL] (L 4- ALL)

The resulting tree is presented in Figure 4.1a. As compared

with Guttman's scale constructed for the same data by the

"Cornell technique" (Figure 4.1b) Model A tree structure indi-

cates presence of several orders (dimensions) suppressed as

error by the Guttman scale.

A



Figure 4.1. (a) Manifest structure of attributes (data matrix

4.2) isolated by the deterministic Model A of order analysis;

(b) The Guttman scale for the same set of items, as constructed

by the "Cornell" technique.
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The logic diagram of a unit test space (Model B).

To systematize the procedure for construction of a data

matrix logic diagram, rearrange the data matrix according to

its marginals, either in descending (Table 4.3) or ascending

order.

As an example of the dominance matrix construction consider

items C and H (Table 4.3). Item C is a prerequisite for item

H in the case of Subjects 7, 15, and 5, item H is a prerequisite

for item C in the case of subject 8 and item H is considered

to be equivalent to item C by subjects 6, 1, 3, 2, 13, 14, 12,

11, 10, and 4. Item H is therefore considered a prerequisite

for item C by one subject out of 15, item C is a prerequisite

for item H for 3 subjects, and item C is considered equivalent

to item H by 11 subjects. Thus the probability of a "prerequi-

site" pattern (10) is 1/15 (.07), and the probability of "dis-

confirmatory" pattern (01) equals 3/15 (.20). In Table 4.4

probabilities of response patterns (10;01) are listed for all

twelve items of the guilt scale.

Asterisks in this matrix's cells signify response patterns

confirmatory across all subjects. On the basis of these values,

a Model B tree can be constructed (Figure 4.2a) by drawing lines

connecting items with asterisks in their corresponding cells.

Probability values of elements of this dominance matrix (Table

4.4) can be used as direct indicators of distances, between the
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Table 4.3.

of guilt.

Reordered data matrix (Table 4.2) for the scale

Cutting lines, used for construction of Guttman

scale, were set as to minimize error (Edwards, 1957, pp. 184-

188).

Subject row
item LJGBDKICEAHEtotals
6 1 1 1 1 1 1 1 1 1 1 1 0 11

1 1 1 1 1 1 1 1 1 0 1 1 0 10

3 1 1 1 1 1 1 1 1 0 1 1 0 10

2 1 1 1 1 1 1 1 0 1 1 0 0 9

7 1 1 1 1 1 1 1 1 1 0 0 0 9

13 1 1 1 1 1 0 0 1 1 0 1 0 8

14 1 1 1 1 1 1 1 0 0 1 0 0 8

15 1 1 1 1 1 1 1 1 0 0 0 0 8

12 1 1 0 1 1 1 1 0 1 0 0 0 7

11 1 1 1 1 1 0 0 0 0 1 0 0 6

5 1 1 1 0 0 1 0 1 1 0 0 0 6

8 1 0 0 1 1 0 0 0 1 0 1 0 5

9 1 0 1 1 0 0 0 1 0 0 1 0 5

10 1 1 1 0 0 0 1 0 0 1 0 0 5

4 1 1 1 1 0 0 0 0 0 0 0 0 4

column
totals

15 13 13 13 11 9 9 8 7 7 6 0

'x



66

Table 4.4. The dominance matrix (Model B) for the data

from Table 4.2.

L J G B D K I C E A H F

L .13* .13* .13* .27* .40* .40* .47* .53* .53* .60* 1.00*

J .00 - .13 .13 .20 .27* .27* .40 .40* .60 .87*

G .00 .07 .13 .27 .33 .33 .33* .53 .40* .53 .87*

B .00 .13 .13 .13* .27 .27 .40 .47 .47 .47* .87*

D .00 .07 .13 .00 .20 .20 .33 .33 .33 .40 .73*

K .00 .00 .07 .07 .07 .07 .20 .27 .27 .40 .60

I .00 .00 .07 .07 .07 .07 - .27 .32 .20 .40 .60*

C .00 .07 .00 .07 .13 .13 .20 .27 .27 .20 .53*

E .00 .07 .13 .07 .07 .13 .20 .20 --- .33 .27 .47*

A .00 .00 .00 .07 .07 .13 .07 .27 .33 - .27 .47*

H .00 .07 .07 .00 .07 .20 .20 .07 .20 .20 .40*

F .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

: ti
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Figure 4.2. (a) Manifest structure of attributes from the data

matrix 4.2 as isolated by the deterministic model of order analysis

B. (b) The Guttman scale for the same set of items as constructed

by the Goodenough technique.
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nodes of Model B tree. Another interpretation of these values

is that an item is a prerequisite for another item for i sub-

jects out of N.

Dimensionality and reproducibility

The general deterministic procedure for construction of

a scale in one dimension is known as scalogram analysis and was

described in detail by Guttman (1941, 1942, 1944, 1946, 1947,

1950, 1954). In his formulation, the idea of a perfect scale

"affords a rigorous test for the existence of single meaning

for an area" (Guttman, 1950, p. 88, italics mine) and "requires

that each person's responses should be reproducible from his

rank alone" (Guttman, 1950, p. 62).

Unfortunately, scalogram analysis does not hold in prac-

tice for "any sizable set of items" (Edwards, 1957, p. 181).

Attempts to accomodate error by the "Cornell method" (Guttman,

1947) and by the "coefficient of reproducibility" (Guttman,

1940) were criticized as insufficiently operationalized (Fes-

Unger, 1947; Loevinger, 1948) and "unwieldy" (Whl!-e and Saltz,

1957, p. 243). An alternative approach to the problem of

errors in univocal scales of measurement will be the topic of

this discussion.

Consider a matrix of all possible response patterns to a

sc:t of k items (a plenum) as E
2
k
xk

and its corresponding Guttman-
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type data matrix C
k+1 x k .

If we disregard the indeterminate

boundary patterns (1 1 1 ...) and (. j 0 ...) of both matrices

and assume the unidimensionality of the Guttman scale, the

dimensionality of the E(2k
2) x k

matrix can be approximated

by the ratio of its order to the order of matrix G
k 1 x k'

i.e.

d
(2
k
- 2) x k 2

k
- 2

e
(k 1) x k k - 1

(4.1)

Let us designate the response pattern pair (1,1) as n, the

"prerequisite" response tuple (1,0) as 7, the "disconfirmatory"

response pair (0,1) as e, and the (0,0) tuple as C. The average

proportion of these response pattern pairs should sum to a unity

and can be written as

k k k k
E n Z w E c E C

i=1 i 1=1 i i=1 i i=1 i
N 417-1 + N + N 1

(4.2)

It can be shown that in the E2kx
k
matrix of all possible

response patterns, all four coefficients are present in equal

proportions, i.e.,

2
k-2)

(k 1) 1

(2k) (k - 1)
4 (4.3)

In the Guttman-type data matrix Giol. the proportion of

G and G coefficients is unchanged, and the value of the G

coefficient is equal to zero by definition. The value of the



G
n

coefficient can be calculated as:

k

EGn

1=1 i
N 2(k+1)
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(4.4)

where k is any odd number. When the k approaches infinity,

k

EGn

lim 1=1 i 1
k

N
cc.

2'
(4.5)

For the data matrix (Table 4.2) the number of "1,0" and

"0,1" respons pairs is recorded in the dominance matrix

(Table 4.5). The number of "0,0" and "1,1" response pairs is

recorded in the consonance matrix (Table 4.6). Expected pro-

protions of the n, n, c, and &, indexes are listed in Table

4.7 and obtained proportions are listed in Table 4.8.

It is possible to test for the significance of difference

between obtained and expected means of n, e, and (n+0 coeffi-

cients. The combined index (nk + cc) can be interpreted as

the degree a plenum is proportionally represented in the sample.

Coefficient
nk

is a measure of the overall tendency of the

whole test to approximate the Guttman scale. The elevated

coefficient
ek

indicates the presence of other dimensions in

the test space designed by the data matrix.



71

Table 4.5. The dominance matrix for items from Table 4.2.

L I G B D K I C E A H F

L 2 2 2 4 6 6 7 8 8 9 15

J 0 2 2 3 4 4 6 6 6 9 13

G 0 1 2 4 5 5 5 8 6 8 13

B 0 2 2 2 4 4 6 7 7 7 13

D 0 1 2 0 3 3 5 5 5 6 11

K 0 0 1 1 1 1 3 4 4 6 9

I 0 0 1 1 1 1 4 5 3 6 9

C 0 1 0 1 2 2 3 4 4 3 8

E 0 1 2 1 1 2 3 3 5 4 7

A 0 0 0 1 1 2 1 4 5 4 7

H 0 1 1 0 1 3 3 1 3 3 6

F 0 0 0 0 0 0 0 0 0 0 0

() 0



Table 4.6. The consonance matrix for items from Table 4.2.

L J G B D K I C E A H F

L 13 13 13 11 9 9 8 7 7 6 0

J 0 12 10 10 9 9 '7 6 7 4 0

G 0 1 11 9 8 8 8 5 7 5 0

B 0 0 0 11 8 8 7 6 6 6 0

D 0 1 0 1 8 8 6 6 6 5 0

K 0 2 1 1 3 8 6 5 5 3 0

I 0 2 1 1 3 5 5 4 6 3 0

C 0 1 2 1 2 4 3 4 3 5 0

E 0 1 0 1 3 4 3 4 2 3 0

A 0 2 2 1 3 4 5 3 3 3 0

H 0 0 1 2 3 3 3 6 5 5 0

F 0 2 2 2 4 6 6 7 8 8 9

72
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Table 4.7. Theoretical proportions of n, n, c, and

coefficients for the E
2
k
xk

matrix of all possible response

patterns to a set of k items, and its corresponding matrix

'10-1 x k' representing a Guttmantype data matrix. Coefficients

n, n, c, and f stand for proportions of (1,1), (1,0), (0,1),

and (0,0) patterns respectively.

E2k
x k G

k+1 x k

Pk(n) -1

Pk(n)

Pk(c) -1;

Pk(°

1

4

2

0

4

ti
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Table 4.8. Obtained frequmcies and proportions of Tr, c,

(from Table 4.5) and n, (from Table 4.6) coefficients.

FREQUENC.LES

Items n e n in+C)

L 69 0 96 0 96
J 57 7 87 12 99
G 60 10 86 10 96
B 56 9 86 10 96
D 51 10 80 23 103
K 49 23 69 31 102
I 50 14 68 33 101
C 55 16 59 33 92
E .t,9 18 48 32 80
A 59 17 52 36 88
H 68 16 43 37 80
F 111 0 0 54 54

PROPORTIONS

Items In+0

L .38 .00 .53 .00 .53
J .32 .04 .48 .07 .55
G .33 .06 .48 .06 .53
B .31 .05 .48 .06 .53
D .28 .06 .44 .13 .57
K .27 .07 .38 .18 .57
I .28 .08 .38 .18 .56
C .31 .09 .33 .18 .51
E .33 ...J .27 .18 .44
A .33 .09 .29 .20 .49
H .38 .09 .24 .21 .44
F .62 .00 .00 .30 .30

Sums 4.14 .73 6.02

Means .345 .061 .502

, k )



Chapter 5

THE DETERMINISTIC MODEL OF ORDER ANALYSIS

An oudine of major computational steps.

The goal of order analysis is the isolation of the mani-

fest and latent structures of the data matrix. In the present

form order analysis is restricted to data matrices containing

only dichotomous response patterns. These response patterns

are conceptualized as atoms in free Boolean algebra (Mendelson,

1970), and the resulting logical net .1s treated in a way analo-

gous to logical operations performed on truth tables.

In every row and column of the data matrix, the relation-

ship between combinations of pairs of its elements is examined

with respect to their truth values generated by the negative

implication function and its converse. The number of pairs

showing the connected, transitive and asymmetric properties

is recorded in the dominance matrix, preserving the direction

of asymmetry. If the items were ordered prior to logical anal-

ysis according to their decreasing item popularities, the con-

firmatory response patterns, characterized as one-zero ordered

pairs will tend to occur in the superdiagonal part of the

dominance matrix. The dlsconfirmatory response patterns,

defined as connected zero-one ordered pairs, will accumulate

in the infradiagonal part.

°, 4
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As a next step, elements of the dominance matrix are

folded along the main diagonal. A tree structure of the data

matrix is formed from those symmetric pairs of the folded

dominance matrix which contain zero number of frequencies of

the converse of negative implication function. In this limit-

ing case of zero occurrence of disconfirmatory response patterns

in adjacent response vectors, branches of the resulting mani-

fest structure of the data matrix are isomorphic with the

structure of the Guttman-type data matrices. No provision

for error estimation is provided; hence the model is determin-

istic.

To isolate a latent structure, the data matrix is par-

titioned into Guttman-type data submatrices. The resulting

supermatrix is operated upon in a series of steps. For each

submatrix, separate reconstruction of its dominance matrix

is performed and resulting Guttman scales are isolated at its

marginals. These ordered, unidimensional components of the

data matrix are finally concatenated into a composite matrix

which i'; isomorphic with the data matrix latent structure.

Additive solution for the data matrix dimensionality.

The question of a lower bound of dimensionality in

the area of deterministic models was first approached by

Bennett (1951) and Milholland (1953). Torgerson (1958, p.350)
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presents a hypothetical set of data which is supposed to fit

Coombs' Conjunctive model in two dimensions. Reconstruction

of the order of items in separate dimensions is based on

Bennett's theorem (Bennett, 1956). To facilitate comparison,

order analysis was carried on the same set of data (Table 5.1).

The item arrangement in two dimensions as a result of oper-

ations described by Torgerson (1958, p. 351) is reproduced in

Figure 5.1. Thus, two-dimensional construction is based on

the assumption that data fit into two dimensions as specified

by Milholland's formula for a lower bound. It is evident that

Coombs' model for this set of data is not completely determined

and consequent incompatible patterns are considered errors.

As a first step of order analysis, the data matrix

marginals were rearranged in decreasing order. This order

can be read from the arrangement of subjects in the dominance

matrix S (Table 5.2), and for items in dominance matrix I

(Table 5.3).

The supradiagonal of both ,'..,minance matrices contain the

number of confirmatory responses and the infradiagonal part

contains the number of disconfirmatory responses. Using the

procedure described previously, the tree was constructed using

the data from dominance matrix S (Figure 5.2).

To partition the data matrix into a superiiatrix, any

branch of the logical tree (Figure 5.2) can be chosen. Let
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Table 5.1 Hypothetical data matrix for the conjunctive

model. (From Torgerson, 1958, p.. 350).

A B

Items

C D E
row

totals

1 1 0 0 0 0 1

2 1 1 0 0 0 2

3 1 1 0 1 0 3

4 1 1 1 1 0 4

5 1 1 .1 1 1 5

6 0 1 1 1 1 4

Subject 7 0 0 3. 1 1 3

types 8 0 0 0 1 1 2

9 0 0 0 1 0 1

10 0 1 0 0 0 1

11 0 1 0 1 0 2

12 0 1 1 1 0 3

13 0 0 1 1 0 2

14 0 0 0 0 0 0

Column
totals 5 8 6 10 4 33

., r

111MNIWIMMINE!
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1 2 3 4

E

5

14

10 11 12 6

13

8

9
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Figure. 5.1. Two-dimensional configuration corresponding to

the data from Table 5.1. Dimensions are inferred from

Milholland's formula for a lower bound of dimensionality

and configuration is reconstructed according to Bennett's

theorem. Numbered regions in the figure correspond to

response patterns of like numbered subject types in Table 5.1.

(From Torgerson, 1958, p. 350).



Table 5.2.

(Table 5.1).

Dominance matrix S for the data matrix D

Subject types

80

5 4 6 3 7 12 2 8 11 13 1 9 10 14 E

5 1 1 2 2 2 3 3 3 3 4 4 4 5 37

4 0 1 1 2 1 2 3 2 2 3 3 3 4 27

6 0 1 2 1 1 3 2 2 2 4 3 3 4 28

3 0 0 1 2 1 1 2 1 2 2 2 2 3 19

7 0 1 0 2 1 3 1 2 1 3 2 3 3 22

12 0 0 0 1 1 2 2 1 1 3 2 2 3 18

2 0 0 1 0 2 1 2 1 2 1 2 1 2 15

8 0 1 0 1 0 1 2 1 1 2 1 2 2 14

11 0 0 0 0 1 0 1 1 1 2 1 1 2 10

13 0 0 0 1 0 0 2 1 1 2 1 2 2 12

1 0 0 1 0 1 1 0 1 1 1 1 1 1 9

9 0 0 0 0 0 1 0 0 0 1 1 1 1 4

10 0 0 0 0 1 0 0 1 0 1 1 1 11 6

14 0 0 0 0 0 0 0 0 0 0 0 0 0 I r)

E 0 4 5 10 13 9 20 19 15 17 28 '23 25 33 221

r, .. 1



Table 5.3. The dominance matrix I for the data matrix D

(Table 5.1).

DBC AE

D - 4 4 7 6 21

B 2 - 4 4 6 16

C 0 2 - 4 3 9

A 21 1 3 - 4 10

E 0 2 1 3 6

E 4 9 12 18 19 62

81
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Figure 5.2. Manifest structure of the data matrix D (Table 5.1)

as isolated by the deterministic model of order analysis.
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us start with the branch composed of subject numbers 5,6,7,8,

9, and 14. Their response patterns are read from the raw

scow matrix (Table 5.1) and recorded in Table 5.4a. Their

item marginals are then computed and items rearranged i.

descending order as in Table 5.4b. Note that the order of

items in the table is identical with D,E,C,B,A order of items

in the second dimension of Torgerson's example (Figure 5.1).

Table 5.4b can now be imagined as a logical truth table.

Negative implication function and the logical functions of

equivalence can be computed for every combination of items.

The difference values of both functions are recorded in the

item dominance matrix for the six subject subset in Table

5.4c. The sum of prerequisite item relationships is listed

in the right marginal (column F1, Table 5.4c). The procedure

is repeated for the remaining logical branches of Figure 5.2

and is recorded in Tables 5.4d through 5.41.

At this point of analysis model C will be introduced.

As compared with the previously described models A ("nonmetric"

and B ("unit space"), model C computations are carried on the

matrix elements formed by products of marginals divided by the

grand total of the matrix. The data matrix (Table 5.1) is

converted into Model C form in Table S.S. The first factor

matrix of Model C is recorded in Table 5.6. Model C data and

factor matrices are the monotonic transformations of their Model

a,
-4 kol
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Table 5.5 Model C matrix of transformed scores from Table

5.1. Items and subject types were rearranged according to

their respective marginals in descending order. Cell entries

are ratios of Model A raw score matrix marginal products of

the grand total of matrix elements.

Items

D B C A E

5 1.52 1.21 .91 .75 .60

4 1.21 .97 .73 .60 .49

6 1.21 .97 .73 .60 .49

3 .91 .73 .55 .46 .36

7 .91 .73 .55 .46 .36

12 .91 .73 .55 .46 .36

Subject 2 .60 .49 .36 .33 .24

types 8 .60 .49 .36 .33 .24

11 .60 .L9 .36 .33 .24

13 .60 .49 .36 .33 .24

1 .33 .24 .18 .15 .12

9 .33 .24 .18 .15 .12

10 .33 .24 .18 .15 .12

14 .00 .00 .0C .00 .00

'4,..

AM....._,



Table 5.6 Model C dominance matrix for Factor I.

Subject

types

Items

D E C B A

5 1.67 1.33 1.00 .67 .33

6 1.33 1.07 .80 .53 .21

7 1.00 .80 .60 .40 .20

8 .67 .53 .40 .21 .13

9 .33 .21 .20 .13 .07

14 .00 .00 .00 .00 .00

87
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A counterparts (Tables 5.1 and 5.4a). Consider the geometric

meaning of these matrix transformations. The data matrix is

of order 14 x 5. The five elements of each row may be regarded

as the Cartesian coordinates of a point in five dimensions.

The rank of its monotonic transformation is four, with vanish-

ing fifth order minors. Let us now take a close look at the

transformed matrix for factor I. It can be seen that for any

row i there exists a constant ci such that aij = diali. The

same can be shown for columns. Each row (column) can be

expressed linearly in terms of the other. This is not true for

elements between particular factor matrices, which are linearly

independent. According to Thurstone's theorem (1947, p. 282),

the number of linearly independent factors represented by the

intercorrelations of n tests is equal to the rank of their

correlational matrix R, which is true for the data of Table 5.1,

provided that a correlation matrix is reconceptualized as a

dominance matrix.

In this sense the matrix in Table 5.7 is the matrix of

order loadings, with column sums analogous to factor contri-

butions and row marginals analogous to communalities. Note

that the grand sum of 62 is equal to the number of one-zero

changes in columns of our raw score matrix (i.e. in information

theory terms, to the number of bits accounted for by items).

Factor IV is due to the response pattern of one subject only



Table 5.7. Matrix of order loadings.

FI F
II

F
III

F
IV

E

D 10 3 5 3 21

E 6 0 0 0 6

C 3 1 2 3 9

B 1 6 9 0 16

A 0 10 0 0 10

E 20 20 16 6 62

',C)
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and can be considered residual. The latent structure of the

data matrix, based on order loadings of Table 5.7 is presented

in Figure 5.3.

We can now return to the original Conjunctive model of

Figure 5.1. As compared with this model, the deterministic

model of order analysis introduces several improvements. The

major innovations are, (a) supplanting the estimate of lower

bound dimensionality by determining the number of dimensions

based on Thurstone's notion of the dimensionality indicator

as matrix rank, and (b) presenting a computational algorithm

which differs from the partially indeterminate procedure based

on Bennett's theorem.
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Figure 5.3. Latent structure of the data matrix D (Table 5.1)

as isolated by the deterministic model of order analysis.

F
I



Chapter 6

THE PROBABILISTIC MODEL OF ORDER ANALYSIS

Probabilistic structure of Guttman-type data matrices.

Previously, we have obtained a matrix of magnitudes by

consistently recording the frequencies of the negative implica-

tion function and its converse or by multiplying complementary

parts of response vectors. If we let stand D
rxq

for a binary

data matrix of rxq order and D
rxq for its reflection (which can

be conceptualized as the addition of the unit matrix U
rxq

in

the modulo two, i.e. D
rxq

= D
rxq

+ U
rxq

(mod 2)), then the

matrix of magnitudes M
qxq

can be written as

M
qxq

= D'
rxq

. D
rxq (6.1)

Suppose that an experiment will yield a data matrix as in

Table 4.2, which is not a perfect Guttman-type data matrix,

but reasonably close to it. This data matrix was obtained by

administering a simple, twelve items scale (constructed to

measure one attribute) to a group of fifteen subjects. To

estimate its manifest structure, we have to obtain the matrix

of magnitudes (Table 6.1) by premultiplying its reflection by

its transpose, as by the use of equation 6.1. The entries

m
ij of this matrix are frequencies of the negative implication

and m
i
elements are frequencies of its converse; i.e. this



93

Table 6.1. The M
qxq

matrix of magnitudes of changes for the

data from Table 4.2. Elements of this matrix were obtained

by premultiplication of the reflected data matrix by its

transpose (Equation 6.1).

A B C D E FGHIJKL
A 0 1 4 1 5 7 0 4 1 0 2 0

B 7 0 6 2 7 13 2 7 4 2 4 0

C 5 1 0 2 4 8 0 3 3 1 2 0

D 5 0 5 0 5 11 2 6 3 1 3 0

E 5 1 3 1 0 7 2 4 3 1 2 0

F 0 0 0 0 0 0 0 0 0 0 0 0

G 6 2 5 4 8 13 0 8 5 1 5 0

H 3 0 1 1 3 6 1 0 3 1 3 0

I 3 1 4 1 5 9 1 6 0 0 1 0

J 6 2 6 3 6 13 1 9 4 0 4 0

K 4 1 3 1 4 9 1 6 1 0 0 0

L 8 2 7 4 8 15 2 9 6 2 6 0
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matrix contains two opposite directions of order. If the data

matrix contained random numbers, we would expect the frequencies

of both negative implication and its converse to be approximately

equal. Consider a. data matrix consisting of two items A and B.

Its corresponding matrix of magnitudes M
qxq

would be in this

case a fourfold table with frequencies mij, xjj, mji, and xii

starting in the first quadrant in clockwise direction. It is

important to note that proportions4a and pb can differ only

if mij differs from mji, since pa = (xi, + ane pb = (xii +

mji) have the common element xii. Frequency of the difference

relation therefore equals mij + mji.

Assuming equiprobability of both directions we can test

the significance of difference (for either direction) in two

ways: (a) the binomial with mean equal to np and variance equal

to npq; i.e. mean of (mij + (.5) and variance of (mij +

mji) (.5) (.5), or (b) with the normal curve approximation. The

latter is accomplished by expressing the difference relation

as a deviation from the mean and divided by its standard devia-

tion, which gives the critical ratio:

mij (mij + mji) (. 5) m1.1 - .5m13 - . 5m
J1

1 1[(m + mji) (.5) (.5)1- .5(m + m2 ij mji )2

mij mji

1
(mij + m

ji
)
2-

I

(6.2)
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Equation 6.3 is similar to the McNemar equation (5.3) for a

critical ratio of nonindependent proportions (McNemar, 1969,

pp. 54-58).

The matrix of magnitudes of changes can be partitioned

symmetrically along the diagonal into the upper triangular

1
matrix M q0

xq
of negative implication frequencies and lower tri-

angular matrix M0' of frequencies of its converse:
qxq

M im10 m01
qxq 1 qxq qxq'

The matrix of z ratios then can be written as:

M10 M01'
- M

10 01' 01 10'

Z +
qxq qxq qxq qxq=

qxq (M10 M01 4 (M01
+ M

01
).
1

` qxq qxq 2 qxq qxq 2

(6.3)

(6.4)

This matrix is list "d in Table 6.2 for our example.

A series of the order pattern matrices PS (dependent on

the lower bound (z , 0 < 1 < + co) of the corresponding confidence

interval) can be constructed for every z significance level.

The entries of order pattern matrices sij are determined by

s
ij

=.mil and s
ii

= m. if the z
ij

value is inside its confi-

dence interval. The relationship sij = sji = 0 is true if the

z
ij

value is outside its confidence interval. The lower bound

of the confidence interval is specified by the researcher.

Successive scanning of the whole positive interval of all values
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is also possible. Thus,

= mij if z > z
P

PS
qxq

= M
qxq

; where s
ij

0 if z < 2
P

By diagonal symmetric partitioning of the order pattern

matrix S,

ps a rp510 I ps01
qxq qxq qxq'

97

(6.5)

(6.6)

and by reduction to the unit space, our relational space can

be reduced into a unit space as

p
S - S
10 s01' ps01 s10'

qxq qxqp, qxq
4-

qxq qxq
(6.7)

To facilitate understanding of the described matrix operations,

the matrices of distances are recorded in Tables 6.3, 6.4, 6.5

for significance levels z1 > 2.58, z2 > 1.00, and 23 > 0.00.

Unidimensional components of the connected graphs and their

extraction.

The relevance of the series of these metric relational

spaces for Guttman scaling can be best depicted by the means of

tree diagrams. A tree is a connected graph which can be used

to plot the logical possibilities of a sequence of events where

each event can occur in a finite number of ways. There are

1
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various types of trees. Relational data from our matrix of

distances cancan be imagined in the general case as' a plane

rooted tree whose branches are the best approximation of the

Guttman-type data matrices. The degree of approximation is a

direct function of the zp parameter of our model.

There are several ways to extract the branches of connected,

asymmetrical., and transitive relations from e PP
rxr

matrix.

One way is to consider transitional probabilities at every node

of the tree, which was the approach we adopted in the computer-

ized version of this model (Krus, 1973). Recently we have

adapted a different approach, following the coding algorithms

for unlabeled trees. This algorithm was developed in graph

theory by DeBruijn and Morselt (1967), Thalwitzer (1968) and

Read (1972), as a consequence of Cayley's (1875) ideas. The

coding procedure is to map a graph into a numerical code so that

decoding will produce a tree which is isomorphic with the coded

tree.

Read's (1972) coding procedure is quite simple and can

be best understood by coding the actual tree diagram (Figure 6.1).

The coding is by binary integers Cgh, where g is the number

of tree nodes and h the number of tree roots. The tree in

Figure 6.1 has two roots at nodes H and F. The strings of

binary codes can be written separately for every root as pyra-

midal catenations of modulo two integers. Thus, for the root H,



1.00

.80

.70

.50

. 40

.20

.10

.00

L01 102

F 000 110 011 010 101 010 100 111

Figure 6.1. Sample manifest structure of the generalized

(zP 2.58) dominance matrix in a unit space.
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the code is 001011 or 13 octal and for root F, the binary

code is 000 110 011 010 101 010 100 111 or 6, 325, 247 octal.

The decoding procedure is done by means of closed curves. It

is possible to imagine the code for every root as a closed

system of left (0) and right (1) parentheses (Read, 1972,

p. 161); i.e. for the H root:

(00)

and for the F root:

(MX()00000(0))

The bottom part of Figure 6.1 was constructed by enclosing a

node into a circle or elipse according to its position in the

system of parentheses. Closed curves represent tree nodes.

Adjacent edges are defined by the immediate inclusion of one

curve inside another. It is possible to reconstruct the

original tree from this type of code either by this graphic

procedure or by the matrix algorithm. To accomplish the latter,

a matrix is produced with elements symbolizing those pairs of

nodes that make up the edges of the tree.

Inspection of the bottom part of Figure 6.1 reveals that

node L is present in more than one closed curve configuration

and is, in this sense, redundant. To remove this redundancy,

the following procedure was developed.

Consider the graph in Figure 6.2, constructed for the

same data by arbitraril7 setting the value of z < 1.0.
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Figure 6.2. Sample manifest structure of the generalized

(zP> 1.00) dominance matrix in a unit space.
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Read's code can be cmputed for every node as L(01), G(0011),

B(0011), ... , F(000011100001110001100011001111100001100111111).

The octal code for the node F would be 10
12

. 78. For our

purposes a simpler coding can be adopted by defining an index

K
gh as a separate sum of binary integer codes C

gh
for every

tree node. Values of the K
gh

index are reported for the illus-

trative example in Table 6.6. In step 1, the sums of Read's

C
gh

codes were obtained separately for every node g and arranged

in descending order in step 2. Concatenation of tree nodes in

this order (and according to their adjacent edges) will yield

their roots h (in our case a,b,c,d, and e), a. recorded in step

3 of Table 6.6.

The redundant projection of the logic diagram, coded by

the C
gh index is depicted in Figure 6.2a (the bottom part).

Projection of nonredundant configurations, as coded by the

K
gh index, are recorded in Figure .6.2b.

As mentioned earlier, every magnitude in the matrix Mrxr

was obtained by recording a value 1 for every ("10") and("01")

relation between the data matrix elements. This dominance-

type matrix preserves orders. This order preserving property

was maintained through subsequent transformations and formed

a basis for a particular tree construction. The resulting

tree code also preserves this property. The breaks between

the substrings of zeros and ones represent the informational

Ii
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Table 6.6. Values of the K
gh

index and roots of the logic

diagram drawn in Figure 6.2.

K
gh

K
gh

TREE
ROOTS

A = 7 F = 23 a

B = 2 H = 12. a

C = 3 K = 8 a

D= 5 A = 7 b

E = 3 1 = 6 b

F = 23 D =S a

G = 2 C= 3 c

H = 12 E = 3 d

I = 6 G = 2 d

J= 2 B= 2 e

K = 8 J = 2 a

L= 1 L= 1 a

(Step 1) (Step 2) (Step 3)
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one-zero breaks between the elements of the data matrix ordered

in a certain direction and dimension. By considering the tree

nodes for every separate area and by writing the reordered

n-tuples of the original data matrix in a sequence of the tree

codes, (as e.g. for the tree branch a from Figure 6.2):

L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

D11111 1 1 1 1 1 0 1 0 0 0

I 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0

A 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

an approximation to the Guttman -type data matrix is obtained.

The degree of approximation is a function of z .

If we continue to lower the zp values, the "width" of the

tree diagrams (which is itself an artifact of planary projection

of the tree branches from the multi-dimensional space) will

diminish. The multifactorial composition of the test space

will be forced by our probabilistic model into a single dimension,

i.e. at a certain value of the z parameter, the test space

will collapse into one dimension. In our example, during the

scanning of the z interval, it happened when the lower bound

of the z interval approached zero (Figure 6.3). At this

point, the tree diagram changed into a linear, unidimensional

II



108

scale identical with the Guttman scale (as constructed in

Table 6.7) and the graphic representation of both its codes

became concentric (bottom part of the Figure 6.3). This

"point of unidimendionality" is the function of the dimension-

ality of the data matrix. If ordering in one dimension is

possible, it will be located in the positive interval of the

z scale.

If the data matrix contains more than one distinct order,

any attempt to construct a unidimensional scale would mean

that our probability of being right is less than .50; i.e.

we would be constructing a model which would be more probably

incorrect than correct. In this limiting case, the use of

the multidimensional model becomes mandatory. The reasonable

requirement is to stay within the limits of the classic one

or five per cent significance levels, which is the practice

meticulously observed in significance testing. The majority

of multivariate analysis models do not permit this direct

observation of the confidence intervals for their dimension-

ality estimates. According to our preliminary comparisons of

our model with the factor analytic methods, the factorial and

order analytic structures frequently converge in the 0 < z <

1.00 intervals, which can account for their instability.

When the conversion of the data matrix into one dimension

would be highly unstable, it is possible to partition it into
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Figure 6.3. Sample manifest structure

matrix in a unit space (z > 0.00).
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a set of mutually orthogonal submatrices with a potential for

the unidimensional direction of order. We will describe this

transition of the data matrix into the structured supermatrix

in the following section.

Latent dimensions of the data matrix.

The previously stated goal of order analysis is the isola-

tion of a data matrix's manifest and latent attributes and

entities. Manifest attributes or entities were conceptualized

in terms of subsets of ordered n-tuples and described in terms

of asymmetrical, transitive, and connected relations between

the elements of each subset. The data matrix (if we limit our

discussion to the test-persons plane of Cattell's covariation

chart (Cattell, 1946, pp. 96-101)) contains information about

the latent classes of subjects (entities) and items (attributes).

Each latent class of subjects can be isolated if the relations

between its members comply with the criteria set up as the

necessary and sufficient conditions for potential unidimensional

order. Partitioning the data matrix for its entities and

attributes will result in submatrices with potential for ordering

the opposite grouping type.

Thus the integrated analysis of the information structure

of the data matrix in the test-persons plane would necessitate

the extraction from the data matrix D
rxq

the matrix of magnitudes

of hypothetical observed changes M in the subject's direction
rxr



of order, i.e.

M w D
rxq

. 151
rxr rxq

with the correspbnding diagonal partitioning

M [M10 1 01
1 M ]rxr rxr rxr
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(6.8)

(6.9)

The formation of subject's typal groups at a specific z
P

level

is done by operations analogous to the separation of the tree

branches of the item space; the relations analyzed are those

between subjects. Hence,

M10 M01'
- M

10 01' 01 10'

Z
rxr rxr

+ rxr rxr=
rxr

(M
10

+ M
01

)
1

0410 + M
01

)-

1
rxr rxr)2 rxr rxr)2

and

PS
rXr

= M
rxr

; where s
ij

= mi
J

if z > z
ii P

= 0 if zij < z
P

(6.10)

(6.11)

Triangulation of the PS
rxr matrix and subsequent reduction of

the reordered Mrxr matrix into the unit space is also analogous

to our previously described algorithm, but in this case matrix

operations are done on the transposed matrices:

2[



and

Ps
is10 sOl

rxr rxr 1 rxr

Pp
[ (S S

l'
+ S S

1 10 0'
° ° 1 1 )]a

rxr N rxr rxr rxr rxr
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(6.12)

(6.13)

By nonredundant coding of the resulting trees, the root codes

are obtained and D
rxq

matrix is regrouped and partitioned

according to their descending order,

Drxq=

D
dl

nlxq

D
d2

n2xq

Ddk
ngxq

(6.14)

where n1, n2, ... n
g designate the number of nodes in the

separated and replanted branches of the original tree with the

number of new roots (iv d2, dk dependent on the z level.

These operations on the intersubject relations of the data

matrix aim at the isolation of item's latent attributes. Attri-

butes underlying the observed variation between test items are

thought of as ordered variables. Despite the fact that this

order is inferred by the formal matrix operations, it was

imposed on the data matrix by subjects, whose judging opeiations
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the data matrix reflects. The variation between subjects

corresponds to the interindividual differences with respect

to an attribute if the potential for unidimensional order is

present in a particular subgroup's responses. The potential

unidimensional order of a different subgroup reflects a

different attribute. The partitioned data supermatrix can be

further analyzed by observing the magnitudes of interitem

relations; as

M
d

qxq =

D
dl' di
nlxq

. D
nlxq

D
d2'

n2xq
D
n2xq

D
dk'

D
ngxq

.

ngxq

(6.15)

The resulting system of M
d

xq matrices is redundant in theq

sense of possible repetitions of the hypothetical simultaneous

observation of a difference with respect to a property measured.

The isolation of this redundancy is desirable and theoretically

could be accomplished by the separate computation of the major

product of response vector with its reflection for every subject.

A dominance matrix could be constructed by recording one bit

of information for every observation, irrespective of the number

1)
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of subjects by which it was observed. This type of redundancy

removal would be appropriate for small data matrices in the

deterministic model.

In the probabilistic formulation, the report of a single

individual is not liable to verification in a formal sense.

The inclusion of each particular bit of information into the

final scales should, therefore, be conditionally dependent on

the degree of certainty that the reported change is real. This

is analogous to the distinction between the common and specific

variance of the factor analytic model. When the observed and

reported information should be called common is, of course,

the question. Are changes common if reported by two subjects,

by all subjects, or by all but one?

The probabilistic solution could be to define the isolated

magnitudes of changes as common if shared by more than 95% of

the total sample with the remaining percentage of magnitudes

defined as specific. In matrix notation, for every isolated

dimension dk; where k=1, 2, k, m, we can compute from

dimension-specific dominance matrices M
dl

, M
d2

, M
dk

,

qxq qxq qxq

M
dm

, their counterparts, as
qxq

l dk
Z
d

Z
d2

Z Z4
zqz' ' qxq' qxq

where Z
qxq

is defined as in equation 6.5.

The matrix F
q

describing the latent structure of

(6.16)



attributes, can be constructed from the row marginal sums of

reduced matrices of magnitudes in every dimension. The

reduced matrices of magnitudes can be written as

Or

d. GP = d GP d GP d GP , diem;K qxq 1 qxq' 2 qxq' '''' k qxq'

where gij

i.. mi
j

if z > z
ii P

= 0 if a
ii

< z
P

Other transformations are possible, as e.g.

gij

g
ij

2., 1 if z ii > z
P

0 if aii < zP

= a
ij

if z > z
ij p

= 0 if a
ii

< z
P
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(6.17)

(6.18)

which have interesting scale properties not to be discussed

here,



Chapter 7

VALIDITY OF ORDER ANALYSIS

Prestructured datd(monotonic transformations).

Methods of multidimensional analysis should reflect the

geometry of real objects in our terrestrial space. The forms

provided by the earth are in a sense limited and simpler than

ideational or other types of abstract spaces. Correct reflec-

tion of forms suggested by ordinary space is a fundamental

validity requirement for any method of dimensional analysis.

This type of validation is possible, if a set of simple physi-

cal objects with well-known relations between its dimensions,

is analyzed.

A collection of eight boxes was asbembled (Table 7.1) and

their respective measures scrambled by twelve monotonic trans-

formations (nine of them borrowed from Thurstone, 1947, p. 142).

The binary data matrix created by these operations was dicho-

tomized at the median, and order analyzed by the deterministic

model. The hypothesis of this validation experiment was that

order analysis will recover the original data matrix dimensions

of length (x), width (y), and height (z). This hypothesis was

verified as reported in Table 7.2. Order loadings are reported

in bits (as rotated by Varimax). The highest order loadings

for every variable delimited the first dimension as a length

1"



Table 7.1. Measurements of length (x), width (y) and

height (z) of a collection of eight boxes.
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Table 7.2. Order analysis (deterministic model) of mono-

tonically transformed and dichotomized data from Table 4.1.

Variables

X
Dimension

Y
Dimension

Z

Dimension

X
2

12.40 1.80 1.80

Y
2

1.84 12.38 1.82

Z
2

1.83 1.78 12.40

log X 12.40 1.77 1.80

log Y 1.84 12.38 1.82

log Z 1.83 1.78 12.39.

e
x

12.40 1.77 1.79

,y
1.84 12.38 1.82

e
z

1.83 1.78 12.39

5x + 3 12.40 1.77 1.79

7y + 8 1.84 12.38 1.82

2z + 5 1.83 1.78 12.39
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factor (x), the second dimension was determined by variables

derived from height measures (z) and the third dimension by

measures pertaining to width (y).

Distorted data (nonmonotonic transformations).

Thurstone's experiment with nonmonotonically distorted

measures of real cubic objects known as "the box problem"

(Thurstone, 1947, pp. 140-143) recently attracted attention,

after it was realized that "all the common analytic and

numerical methods fail to locate the clear simple structure

when applied to it" (Cureton and Mulaik, 1971, p. 375). This

particular experiment is also a validity-type test. Moreover,

its stringent requirements can facilitate additional insights

into properties of validated techniques.

Thurstone's original data was reconstructed from Tables

4 and 5 (Thurstone, 1947, pp. 141-142). The use of logical

constants by order analysis necessitated conversion of Thur-

stone's data matrix into a binary matrix by dichotomization

at the mean. Comparisons of rotated (Varimax) factor and

order analytic solutions can be made from Tables 7.1 anal 7.4.

Principal component factor analysis was done on a matrix of

PHI correlations and order analysis of the dominance matrix

was at 1.64 z level. For factor analysis, the retained eigen-

values were 9.81, 3.58, 2.76 and 1.17. Order analysis retained

four factors, and rejected two factors with extraction indexes
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Table 7.3. Rotated matrix of factor loadings for Thurstone's

"box problem". Rotation was by Varimax with Kaiser's normali-

zation.

Variables
(X)

Factor 1
(Y)

Factor 2
(Z)

Factor 3 Factor 4

X
2

.98 .10 .04 -.02

Y
2

.13 .92 -.01 .03

Z
2

.05 .10 .35 .92

XY .39 .86 .19 .05

XZ .26 .08 .82 .2;)

YZ .00 .27 .85 .27

2 + Y .70 .60 .06 -.01
1/-.-X + Z
r2-----T

.82 .18 .17 .31

Y + Z .10 .73 .24 .51

2X + 2Y :39 .86 .17 .05

2X + 2z .52 .14 .57 .21

2y + 2Z .04 .63 .58 .22

log X .98 .10 .04 -.02

log Y -.09 .55 .38 .21

log Z .10 -.03 .84 .12

XYZ .21 .38 .65 .46
/2 2

Z2X + Y + Z .52 .65 .27 .18

e
x

.83 .23 .19 -.02

e
Y

.13 .92 -.01 .03

e
z

.05 .11 .35 .92

..1.1it)
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Table 7.4. Matrix of order loadings for Thurstone's "box

problem." This solution was rotated by Varimax with Kaiser's

normalization. Order loadings are reported in information bits.

Variables
(x)

Dimension 1
(y)

Dimension 2
(z)

Dimension 3 Dimension 4

x
2

27.00 3.06 5.54 -.27

y2Y 2.87 20.13 4.28 2.86

z
2

1.04 -.18 9.59 9.12

xy 5.51 19.52 8.47 1.72

xz 16.53 1.20 40.42 1.75

yz -1.31 17.94 29.01 11.42

x
2
+ y

2
23.84 22.05 10.36 1.86

x
2
+ z

2
26.16 4.56 12.20 1.16

y
2
+ z

2
2.30 17.10 13.14 11.67

2x + 2y 5.51 19.52 8.47 1.72

2x + 2z 33.76 5.60 34.71 6.32

2y + 2z 1.88 29.64 30.10 13.90

log x 26.99 3.06 5.54 -.27

log y 1.97 25.70 32.06 38.24

log z 13.16 13.17 58.38 6.10

xyz 1.84 5.12 14.83 7.77
x2472+z2

11.17 17.55 20.38 -.30

e
x

14.68 -.08 9.62 -3.54

e' 2.87 20.13 4.28 2.86

e
z

-1.04 -.18 9.59 9.12
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lower than .05. (The meaning of the extraction index will be

discussed later.) As compared with Thurstone's (1947, p. 371,

Table 2) original solution of the box problem (centroid), the

principal components solution (Table 7.3) and order analysis

(Table 7.4) isolated an additional dimension. In the case of

factor analysis this additional dimension was probably generated

by the point-biserial correlation coefficients. (This guess

could be substantiated if a matrix of tetrachorics were analyzed

and both solutions compared.) In the case of order analysis,

The solution was probably influenced by a nonstandardized domin-

ance matrix. Again, this could be tested if double standardi-

zation routines were available for the order analysis program.

Inspection of both factor and order loadings shows that

both methods returned correct structures. Exceptions are

loadings for variables z
2
and e

z
in the case of factor analysis

and variable log y loading high on the fourth dimension in

the structure returned by order analysis. When all six dimen-

sions isolated by order analysis were rotated and highest vari-

able loadings separately highlighted for the first three and

second three dimensions, a structure xl, yl, z1
j

x2, y2, z2

emerged.

Random data.

The tendency of factor analytic models to analyze patterns

of random variation is well known. Thus Guilford's (1.7)
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classic article "When Not to Factor Analyze" cautions that

"statistical operations do not compensate for carelessness in

making observations" (Guilford, 1967, p. 310). This caveat

is based on repeated observations of this fallacy; were factor

analysis to reflect random structures as such, this type of

warning would be unnecessary. It is unfortunately true that

factor analytic methods do analyze random variation present

in the data matrix and that, from inspection of factorially

derived structures alone, it is impossible to ascertain the

degree of randomness of the data.

The z parameter order analysis. provides the technical

means for alteration of sensitivity to random variation. As

may be recalled, order analysis at the specific z level selects

from the data matrix elements only those orders with probability

of particular direction equal to or greater than the preset

probability z . Thus order analysis at the 1.64 z level analyzes

only orders in which the probability of a particular direction

p is equal to or greater than .95. The decision to accept

vectors of less certain determination is simulated by the lower-

ing of the z level. Thus order analysis at the .01 z level

(equivalent to .50 p level), accepts as real those orders with

probability p greater than .50, i.e. all potential orders

within the .01 to + co z-interval which is equivalent to the

.50 to + 1.00 p interval.
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If a data structure is highly organized (i.e., nonrandom),

the majority of ordered vectors would be expected to lie in

the upper part of the z interval and the resultant structure

would be a correct reflection of the real structure of the

data matrix. If the data matrix contains substantial amounts

of random variation, the majority of potential orders will be

in the lower part of the z interval and in all likelihood will

be unstable.

An indirect test of this hypothesis would be comparison of

structures isolated by different models from random data

matrices with simultaneous variation 'of the order analysis z

parameter. Using random data matrices, it was expected that

the factor analytic method would yield results similar to those

of order analysis at the p > .50 (z > 0.01) level. By raising

the z level, order analysis should ideally return a zero-filled

matrix of order loadings.

Five factor analytic models were compared with order

analysis at two levels. The frame of reference for this vali-

dation study was adapted from Armstrong and Soelberg's (1968)

study. Industrial ratings of a supervisor on 20 traits by 50

employees were simulated by a table of random numbers (Rand

Corporation, 1955). Adjectives used as trait descriptors were

also culled from this study (p. 362) and prior to the analysis

were assigned in random order to columns of the data matrix.
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The only alteration of Armstrong and Soelberg's design was

in dichotomization of the data matrix by an odd-even:one-zero

rule.

The data were .factor analyzed by principal components

(PC), principal factors (PF), alpha, canonical (RAO), and

image models. Order analysis was conducted at the 1.64 and

0.01 z levels. The factor analyses were based on phi correla-

tions among the 20 "variables." With the exception of the

principal components method, squared multiple correlations

were used as initial communality estimates; factor analytic

solutions were iterated. Retained factors were rotated by

Varimax with Kaiser's normalization for all methods including

order analysis.

Eigenvalues obtained for all factor analytic solutions

and their order analytic counterparts (extraction indexes)

are reported in Table 7.5. According to Kaiser's conservative

factor extraction rule, only eigenvalues greater than 1.0 were

retained. Only those latent subgroupings containing more than

5% of the total number of entities or attributes analyzed

were retained; extracLion indexes smaller than .05 were rejected.

This decision rule is arbitrary and is modelled after the

customary significance levels for rejection of the null hypothe-

sis (Fisher, 1925).

Table 7.5 shows that by this criterion the factor analytic
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Table 7.5. Eigenvalues for factor analytic solutions and

their order analytic counterparts.

FACTORS PC PF ALPHA RAO IMAGE ORDER
0.01z

ORDER
1.64z

1 2.39 1.89 4.09 5.15 4.21 .20 .06

2 1.98 1.42 3.30 4.31 3.07 .14 **

3 1.80 1.31 2.94 3.66 2.99 .14 **

4 1.74 1.22 2.52 3.46 2.78 .14 **

5 1.48 * 2.18 2.78 2.16 .12 **

6 1.40 * 2.03 2.30 1.99 .10 **

7 1.25 * 1.67 2.24 1.92 .08 **

8 1.15 * 1.34 2.03 1.70 .05 **

9 * * * * 1.41 ** **

10 * * * * 1.26 ** **

11 * * * * 1.20 ** **

12 * * * * 1.11 ** **

13 * * * * 1.06 ** **

14. * * * * * ** **

* Eigenvalues < 1.00
** Order analysis extraction indices < .05

1"-it
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methods retained from 4 to 13 factors. Principal compon-

ents, alphl, and canonical factor analyses all yielded 8

factors, as did order analysis at z > 0.01. When ( _der analy-

sis used a z > 1.64 (.05 significance level), only one marginal

dimension was identified. The percentage of total variance

analyzed was greater than 66% for all factor analytic models;

order analysis analyzed 1335 bits at the 0.01 z level and 5

bits at the 1.64 z level. The data matrix contained 4713 bits

of variance among its attributes. Order analysis therefore

analyzed 28% of the variance at the 0.01 z level and 10% at

the 1.64 z level.

To avoid the necessity of presenting five separate and

highly similar factor loading matrices, eight factors were

rotated for the factor analytic methods and interpreted with

the order analysis (1.64 z level) results. To facilitate com-

parison with Armstrong and Soelberg's (1968) results (derived

from the same tables of random numbers as were used in the

present study but obviously not using the same numbers), nine

factors were rotated and interpreted for order analysis at

0.01 z level. For the same reason, the order loadings origin-

ally isolated in binary digits were divided by their row sums

and square roots of these proportions were computed which

further simulated factor loadings.

Table 7.6 shows a comparison of order analysis at z > 0.01
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with Armstrong and Soelberg's (1968, Table 1) results. The

data show that when order analysis is implemented in simulated

traditional factor analytic fashion (i.e., not eliminating

dimensions on the basis of statistical probability) it yields

results similar to those of factor analysis. Under these

circumstances, both order analysis principal components

analysis yielded "interpretable" results from randomly generated

data.

Both structures in Table 7.6 are roughly comparable to

the structures isolated by the other factor analytic methods

reported in Table 7.7. However, the structure isolated by

order analysis at 1.64 z level is different. With the excep-

tion of one variable, order analysis at the 1.64 z level

(last column of Table 7.7) returned a matrix of zero loadings,

which describes the generalized latent structure matrix of

random data at the five per cent significance level for a one-

tailed test. Thus, the probabilistic implementation of the

order analysis method indicates that there are no latent dimen-

sions of any consequence in the random data matrix.

Results anticipated on the basis of our "width of the

confidence band" hypothesis were supported by this random data

type of validation study. The only deviation from predicted

results was observed in the case of order analysis at 1.64 z

level with the variable "sensitive" which returned a value of
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Table 7.6. Structures of randomly generated data matrices
as analyzed by order analysis at 0.01 z level and as reported
by Armstrong and Soelberg (1968, p. 362, Table 1). Order

loadings were converted in this table into simulated factor
loadings.

Principal Components Analysis
(Armstrong and Soelberg)

Order Analysis
(0.01 z level)

I. Fascism I. Democracy

Sensitive -.72 Democratic .47

Democratic -.72
Responsible .69 II. Ascendancy

Aggressive .54

II. Sincerity Responsive .70

Sincere -.85
III. Social Distance

III. Social Distance Sensitive .59

Formal .84 Formal .63

Fair -.65 Active .46

Humble -.54
IV. Reliability

IV. Reliability Trustworthy .57

Trustworthy .80 Humble .58

Humble .55

V. Docility
V. Docility Warm .50

Patient .69 Docile .45

Shallow .59 Submissive .54

Aggressive -.53
VI. Kindness

VI. Kindness Patient .47

Kind .82 Fair .58

VII. Humor VII. Humor
Humorous -.88 Humorous .40

Aggressive -.54 Kind .56

VIII. Tactfulness VIII. Shallowness
Tactful .81 Shallow .46

IX. Social Leadership IX. Social Leadership
Warm .72 Sincere .60

Active .71 Enthusiastic .50

Enthusiastic .64 Tactful .59

Ambitious .55 Ambitious .45
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Table 7.7. Structure of randomly generated data matrix as
described by principal components, principal factors, alpha,
canonical, and image factor analytic models and corresponding
loadings as returned by order analysis at 1.64 z level.
Order loadings are reported in this table as information
theory bits.

Factors and High
Loading Variables

Method
PC PF ALPHA RAO IMAGE ORDER

I. Achievement via
confirmance

Docile .84 .70 .74 .72 .42 .00

Ambitious .53 .32 .31 .32 .20 .00

II. Ascendancy
Sincere .78 -.60 .63 -.59 .43 .00
Submissive -.61 .55 -.53 .57 -.27 .00

III. Social distance
Formal .71 .55 .57 .53 .44 .00

Humble -.69 -.58 -.57 -.57 -.44 .00

IV. Dependency
Active -.80 -.74 -.79 -.75 -.52 .00
Warm .70 .59 .55 .60 .43 .00
Shallow .50 .37 .41 .34 .36 .00

Trustworthy .45 .37 .37 .35 .32 .00

V. Partiality
Sensitive .74 .54 .53 .56 .40 5.00
Fair -.70 -.55 :-.54 -.53 -.28 .00

VI. Kindness

Kind .74 .43 .45 .43 .39 .00
Patient .60 .52 .58 .50 .34 .00
Responsible .41 .33 .27 .36 .37 .00

VII. Sarcasm
Humorous .76 .63 .64 .63 .47 .00

Democratic -.60 -.45 -.46 -.44 -.37 .00
Enthusiastic -.53 -.47 -.45 -.47 -.37 .00

VIII. Tactfulness
Aggressive -.83 -.77 -.77 -.77 -.61 .00

Tactful .75 .66 .63 .66 .58 .00
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five bits.

It is interesting to follow the genesis of these five

stray binary digits. As described by equations 6.4 and 6.16,

we are attempting to generalize isolated manifest and latent

structures of entities and attributes by using multiple z

tests, a practice usually rejected at the elementary statis-

tics course level. Generalization of the square dominance

matrix M
rxr (in this case of the order 50), necessitates 502 =

2500 comparisons of its elements, i.e., 2500 multiple z tests.

As can be expected, five per cent of these tests will be randomly

significant, which leaves 125 error bits added to the total

amount of binary variance contained by the generalized dominance

matrix for entities PP if the redundance-removal transfor-rxr

mation (as in equation 6.18) is used. Five per cent of these

randomly generated binary digits (6.25 bits) should reappear

in the matrices representing the generalized relational space
d
k

of attributes G
qxq (equation 6.17, transformation 6.18) and,

consequently, in the resultant F
qxd matrix of order loadings.

The present analysis actually found 135 randomly generated

binary digits contained in matrix PS
rXr and 5 random bits con-

tained in the F
qxd matrix.

The implementation of multiple z tests in the present model

of order analysis was dictated by its simplicity with respect

to its actual computer program realization; any attempt for

addition of some type of ANOVA contrast seems premature at the
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present state of development. However desirable this imple-

mentation seems to be, its realization would be mostly of

theoretical significance. Dominance matrices for actual data

ordinarily contain several thousand bits of information and

the amount of error variation in terminal matrices, generated

by implementation of multiple z type general- zation procedures,

is negligible. However, when the isolation of manifest struc-

tures is attempted, the amount of error variation generated

by the multiple z tests should be taken into consideration.



Chapter 8

RETROSPECT AND PROSPECTUS

Standardization

Despite the singleminded effort for nearly half a decade,

the development of order analysis as a method for a general,

semantically based account of dimensional arrangement of cogni-

tive fields, is far from completion. The initial adoption of

the relational matrix of the negative implication function and

its converse influenced the formulation of the deterministic

model of order analysis to such a degree, that the early com-

puterized version of order analysis was referred to as Negative

Implication Analysis (Krus, 1972). This does not mean that

this particular operation cannot be altered.

When the data matrix is composed of roughly comparable

entities and attributes, the preservation of its elevation

and scatter (Cronbach & Gleser, 1953) by the dominance matrix

can be an advantage in certain situations. As contrasted with

standardized correlation matrices of factor analysis, this preser-

vation of elevation and scatter can be incorrect when the data

is presented in markedly incomparable units. Standardization

of the data matrix prior to analysis is also recommended for

raw score factor analysis (Nunnally, 1967). It is interesting

to observe that the dichotomization procedure approximates
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direct standardization of the data matrix. In the case of

markedly disparate data, the dichotomization according to

median, or a double standardization of the data matrix is

recommended.

Optimization of the dominance-consonance ratios.

Another point open to discussion is the inability of the

dominance type of relational matrix to optimize the dominance-

consonance ratios. This can be understood by considering primi-

tive bases of relational matrices used in various methods of

dimensional analyses.

Eventually, every relational matrix can be decomposed into

a combination of some of the sixteen basic functions of the

logical calculus. These logical functions can be classified

into order-independent and order-dependent aliorelative classes.

Coombs' classification of relations into the dominance (order)

and consonance (proximity) classesreflects these underlying

logical classifications. (Coombs, Dawes, and Tversky, 1970,

p. 33).

For example, a nucleus of the phi coefficient of a four-

fold point surface (Yule, 1919, pp. 60-75) is based on the

value of the determinant of this square matrix (cf. Lazarsfeld,

1961, pp. 111-157). Close scrutiny of the determinant of

this type of matrix will reveal that frequencies of equivalence

(i.e., one-one and zero-zero tuples) are compared with frequencies



136

of negative implication and its converse, counted across one-

zero and zero-one tuples. Preponderance of either equivalence

or negative implication binary relations will determine whether

the matrix of phi coefficients will be of dominance or consonance

type with respect to relations between the elements of the

original data matrix. In a similar fashion, a reflection of a

variable in a data matrix changes its relation with any other

variable from dominance to consonance or vice versa. As con-

trasted with this procedure, the dominance matrix does not weigh

these ratios. This is e.g. reflected by absence of negative

order loadings in the F
qxd

or F
rxd

matrices (negative order

loadings, as reported elsewhere, were created by rotational

procedures). On the other hand, the dominance matrix preserves

the ordinal properties of the data matrix better than a symmetric

matrix of correlations. Thus any future attempt to optimize

the data matrix orientation and preserve at the same time its

potential orders, would lead to a relational matrix superior

to either dominance or correlation-type relational matrices.

Thurstone's Law of Comparative Judgement.

In its least general form (case 5), Thurstone's Law of

Comparative Judgment (Thurstone, 1927, a, b, c) states that

the difference between the scale values of two stimuli (S.-S.)

is a function of the proportion of times stimulus j is judged

(1.
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greater than stimulus i. The Law of Comparative Judgment

represents the first systematic use of the difference relation

properties in the field of psychological measurement; it is the

direct antecedent of the concept of dominance matrices, as used

by Coombs (1964) in his data theory and by order analysis.

Types of variance extracted.

It is necessary to explicate the types of variation which

the present model partitions. It should be remembered that

the variance is defined here in terms of directional one-zero

changes, i.e. as a number of bits in the test space or its part.

Variance conventionally expressed as a second moment about the

mean is a function of this information measure and has a different

metric. The advantage of order analysis of dominance matrices

is that it permits a precise, undistorted manipulation of basic

relations between the elements of the test space, with the open

option for resealing prior to or after the analysis proper.

To facilitate our discussion,- let us consider the con-

trived example in Table 8.1. The data matrix in this example

D
rxq has its total variance equal to twenty bits with row and

column variances equal to six bits each, which leaves eight bits

for interaction. The row and column variance is recorded in

rxr
and M

qxq matrices and the interaction variance could be

described in terms of corresponding minor matrices of magnitudes.
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If we partit ned the data matrix into the vector supermatrix

(a procedure analogous to the principal components analysis),

the minor matrices would change into the zero matrices, the

total variance would be equal in every type of analysis to its

corresponding matrix of magnitudes and the number of dimensions

to r or q. Observe the R chain in Table 8.1 through steps 1 to

8, which partitions the data matrix D
rxq

into a supermatrix

with d
1
D
nlxq

and d
2
D
n2xq

submatrices. The total variance of

the d
1
D
nlxq submatrix is 9 and consists of row variance of four

bits (31Mqx(1), column variance of one bit (S
rzxr

1
) and interaction

variance of four bits. The total variance of d
2
D
n2xq

subvector

is 2. All variance in this subvector is due to row variation

only. The total variance of the whole supermatrix is therefore

eleven bits, composed of the six bits of row variation, one bit

of column variation and six bits of interaction. Our example

was purposefully constructed in such a way, that the same variance

distribution can be found in the Q branch of our example. This

is of course not necessarily the case. The sum of total vari-

ances of both R and Q branches is therefore twenty-two bits, two

bits more than the total variance of the original data matrix.

This inequality can be corrected by subtracting one bit for

z>1 z>1mutually shared S and S
qxq

variance; which was introducedrxr

by concatenation of Guttman-type data vectors. (Two vectors

were catenated in our example in every branch and variation
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created by this chaining stands for jumps typical of this

data type (one-zero change as circled below:

.111 000...

000...).

The probabilistic character of this mutually shared

variance at the first level of dimensionality estimation is

due to its prior Z
qxq

or Z
rxr

transformation. Let us restrict

our scrutiny to R -type covariation design. The initial parti-

tioning of the data matrix, derived from the structural char-

acteristics of the S matrix is based on the generalization of
rxr

the structural properties of the M
rxr

matrix to the structure

of a population of subjects by the Zrx
r

transformation. The

partitioned variance is interdimensional. Successive steps

(R10 through R13, Table 8.1) separately repeat this estimation

z>1
process for every d S

z>1
d S

z>1
d S

z>1
1 qxq

d S
2 qxq' k qxq qxq

matrix. These matrices are the generalizations of the structural

properties of the corresponding M
qxq

matrices to the structure

of a population of variables by the diZqxq, d2Z(Ixq, dkZqm,

d
m
Z
qxq

transformations. The partitioned variance is

intradimensional.

Integrated analysis of the general relational space.

Another interesting point is the affinity of order analysis

to the logic behind Campbell and Fiske's (1959) multitrait-
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multimethod matrix, which is the specific formulation of the

general relational space of attributes and entities. Consider

matrix elements a, b, c, i of the square matrix of the

order three. The complete relational space of this matrix is

depicted in Table 8.2, The R and C symbols stand for the rela-

tions between its respective row and column elements. Its

heterotrait-monomethod triangles are equivalent to the upper

and lower triangular matrices of our M
rxr

matrix and its validity

diagonal contains the values of M
qxq

matrix. The requirements

for convergent and discriminant validity could be phrased in

terms of factorial validity as appropriate inter- and intra-

dimensional generalizability.

The iterative and integrated analysis of this type of space

could be imagined as simultaneous analysis in R and Q branches

(Table 8.1), with the terminal matrix of latent attributes and

entities defined in three dimensions as F
rxqxd

. Iteration

criterion could be the maximization of variance for all four

structures (manifest attributes, manifest entities, latent

attributes, latent entities) and minimization of the interaction

variance (blank spaces in Table 8.2).

Considering the development in order analysis from its

deterministic model (Krus and Bart, 1972) through its probabilis-

tic formulation (Krus, 1973) and technical development (Krus,

1973), subsequent elaboration will probably entail some improve-

100
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Table 8.2. Relational space of a square matrix, depicting

the relations betwe' its elements. R subscripted symbols

stand for successive r,. elements; C for column elements.

There are three rows and three columns with elements a, b,

c, i - elements :obeled by starting in uppermost

left corner and by f tinAng rowwise. Blank spaces stand

for interaction relations and V symbols for homorelative

relations.

a b c a e f g h

a V R1 R1 C
1

Cl

b R1 V R
1

C
2

C
2

c R
1

R
1

V C3 C3

d C
1

V R
2

R
2

C
1

e C
2

R
2

V R
2

C
2

f C
3

R
2

R
2

V C
3

g C
1

C
1

V R
3

R
3

h C
2

C
2

R
3

V R
3

i C
3

C
3

R
3

R
3

V
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ments suggested here as well as reconsideration of the challeng-

ing issues connected with the general problem of structural

analysis and generalization; questions of optimization versus

maximization of root extraction procedures and redundancy removal

transformations.

The most important property of order analysis is perhaps

its insensitivity to random variation patterns as compared with

other models of multivariate analysis. This property is supported

by our theoretical reasoning and experimental validation and has

profound implications for the geostral field of theoretical and

applied multivariate measurement.

I ;
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